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A Secure Supply-Chain 
RFID System that 
Respects Your Privacy

I ntroducing RFID tags based on the Elec-
tronic Product Code (EPC) standard1 
into the global supply chain is one of 
the world’s most ambitious pervasive 
computing projects. EPC tags are low-

cost wireless devices that associate a computer- 
readable ID to physical objects. They were 

designed as an upgrade to 
the familiar 14-digit Univer-
sal Product Code (UPC) bar 
code. In contrast to UPC bar 
codes, which signify only that 
an item is of a particular type, 
EPC tags can carry more data, 
including a 96-bit globally 
unique item identifier (UII) for 
each individual tagged item. 
EPC tags communicate with 
tag readers using UHF radio, 

letting readers interrogate them from a distance 
of several meters—even with no line of sight 
between the tag and the reader.

Although the increased data capacity and 
interrogation range make EPC tags useful 
for supply-chain operators, these same ca-
pabilities pose privacy issues that didn’t ex-
ist with optical bar codes.2 For example, by 
placing EPC readers in multiple locations and 
searching for any RFID tags a person carries, 
such as RFID-tagged clothes or banknotes, it 

 becomes possible to track individuals moving 
between the locations. In a broad survey of 
the RFID security and privacy threat land-
scape, Pawel Rotter  argues that the demand 
for security increases with the potential dam-
age to users and the  potential gain to attack-
ers.3 Encrypting the communication between 
tags and readers would allow only a legiti-
mate reader to read a tag’s UII and thus pre-
vent eavesdroppers from learning anything 
from a recorded session.

Low-cost RFID tags are generally susceptible 
to reverse engineering, and a captured tag can 
also be cloned and attached to many counter-
feit items. A track-and-trace network is a basic 
anticounterfeiting technique that links all of a 
supply chain’s EPC readers to a central server. 
Every time a reader that’s connected to the net-
work accesses a tagged item, the item’s current 
physical location is tracked and updated on the 
central server. A counterfeited item will exhibit 
an unusual and detectable usage pattern, such 
as being present in two different countries at 
the same time, and can be blacklisted. To avoid 
blacklisting, a more  sophisticated attacker will 
create fake tags that return different arbitrary 
or randomized UIIs. This requires a further an-
ticounterfeiting mechanism: cryptographically 
signed UIIs that prevent attackers from generat-
ing their own arbitrary UIIs.

A prototype RFID system uses public-key cryptography to simplify 
deployment, reduce trust issues between the supply-chain owners and 
tag manufacturers, and protect user privacy. It demonstrates that 
high-security and standard EPC tags can coexist and share the same 
infrastructure.
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Because of the very low resources 
available on EPC tags, public-key cryp-
tography is generally considered too 
complicated to deploy on tag  hardware—
leaving symmetric-key cryptography as 
the primary option for such systems. Un-
fortunately, symmetric-key cryptography 
imposes negative trust issues between the 
various stakeholders.  Furthermore, if a 
single tag is reverse-engineered and the 
symmetric key is leaked, the whole sys-
tem’s security  collapses. Here, we present 
an approach to secure the EPC supply 
chain using public-key cryptography to 
protect the interests of all stakeholders: 
supply-chain owners, merchants, and 
consumers.

System Design
The crucial element in our system is 
the WIPR (Weizmann-IAIK [Institute 
for Applied Information Processing 
and Communications] Public Key 
for RFID) encryption scheme (see the 
sidebar).4 WIPR has a low resource 
footprint—full-strength WIPR en-
cryption can be implemented even 
within the limited resources of an 
EPC tag. We created a full system to 
demonstrate our approach, including  
software usable by various entities 
in the supply chain, a fully EPC- 
compliant UHF tag implementing 
WIPR in custom firmware, and a pro-
totype point-of-sale (POS) terminal 
that uses an off-the-shelf RFID reader 
and supports both encrypted and un-
encrypted tag communication while 
strictly  operating within the standard 
EPC air-interface specification.

Figure 1 shows a logistic view of our 
system, representing the members of a 
secure RFID supply chain: a supply-
chain owner who wishes to use RFID 
technology but doesn’t manufacture 
tags; the tag manufacturer that pro-
duces and deploys many tags on be-
half of the supply-chain owner; the 
merchant, who owns the POS termi-
nal connected to an individual reader 
j; and an individual RFID tag i. Each 
tag is  attached to a particular piece of 
merchandise in the system. The reader 

is the device that communicates with 
the tags.

The parties’ interests differ. The 
supply-chain owner requires UII sig-
natures that can’t be forged and UIIs 
that no other party, including the 
manufacturer, can sign. The owner 
also  requires that if and when tags are 
reverse- engineered and all their private 
data is extracted, the attacker can’t do 
more than clone the specific tags that 
were reversed. In particular, a tag’s pri-
vate data should not allow the attacker 
to generate new signatures on UIIs.

The manufacturer needs access to the 
signed UIIs as well as the cryptographic 
keys that must be written to the tags. 
The merchant’s reader must be able to 
communicate with the tags and verify 
the UII signatures. Finally, the cus-
tomer holding the tag needs assurance 
that adversaries can’t eavesdrop on the 
tag’s communication with the reader 
and so requires the communication be-
tween tag and reader to be encrypted. 
Further, the customer needs assurance 
that a rogue reader won’t be able to 
 either read the tag’s data or identify and 
track the tag.

To meet these conflicting require-
ments, our system uses two pairs of 
public-private keys:

a private-signing key, kS, together 
with its public-verification key, kV, 
and 
a private-decryption key, kD together 
with its public-encryption key, kE.

It uses the pair (kS, kV) to sign and 
verify UIIs and the pair (kD, kE) to 
 authenticate the reader to the tag and 
to  encrypt and decrypt the commu-
nication between them. The supply-
chain owner generates all the key ma-
terial. The signing key kS never leaves 
the  supply-chain owner’s premises. 
Instead, the supply-chain owner gen-
erates a list of signed UIIs and sends 
them to the tag manufacturer, together 
with the public-encryption key kE. 
Without the private-signing key, the 
tag manufacturer can’t create arbitrary 

signed UIIs—in other words, the owner 
doesn’t need to trust the manufacturer. 
The manufacturer produces all the tags 
and embeds within each tag the public-
encryption key kE, and a single signed 
UII from the list.

The use of public-key cryptography 
guarantees that an adversary gains 
nothing from reverse engineering an 
individual tag other than the single sig-
nature for that individual tag’s UII and 
a public key that lets it send encrypted 
messages to the reader but not decrypt 
them. Finally, the supply-chain owner 
sends the decryption key kD and the 
signature-verification key kV to the 
merchant’s reader, so the reader can 
decrypt the tag messages and verify the 
UII signatures.

Data Flow and Communication 
Protocol
Figure 2 shows our system’s data flow 
and communication protocol in the ac-
tions of three parties: the supply-chain 
owner’s offline key generation and 
signed UII generation and the commu-
nication protocol between the reader 
and an individual tag. The manufac-
turer doesn’t appear in the figure be-
cause it doesn’t participate in the com-
munication protocol.

The reader starts the protocol by ac-
tivating the tag and sending it a random 
challenge. The tag responds by encrypt-
ing this challenge together with the 
tag’s signed UII and additional random 
bytes, then sending this data back to 
the reader. The tag’s response also au-
thenticates the reader to the tag because 
a rogue reader, lacking the decryp-
tion key kD, can’t decrypt it. Finally, 
the reader decrypts the tag’s response, 
 verifies that it contains the correct chal-
lenge and UII signature, and outputs 
the UII.

This scheme has several beneficial 
properties.

First, the use of encryption means 
that the adversary can’t discover the UII 
or the UII’s signature by intercepting 
over-the-air communications.  Unless 
the adversary knows how to crack the 
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encryption scheme, the only practical 
way to recover the tag’s payload would 
be to reverse-engineer the tag or com-
promise a reader.

Second, the reader issues a fresh 
 random challenge in every protocol 
 execution. This foils an adversary that 
tries to impersonate a tag by  recording 

challenge-response pairs used in success-
ful transactions and waiting for a reader 
challenge to be repeated. The adversary 
would have to record an  impractically 

Y ossef Oren and Martin Feldhofer developed the WIPR 
(Weizmann-IAIK [Institute for Applied Information Pro-

cessing and Communications] Public Key for RFID) low-resource, 
public-key encryption scheme.1,2 Jiang Wu and Douglas Stinson 
subsequently proposed an improvement that claims to reduce 
hardware requirements and protect against some attacks.3

WIPR is a variant of Rabin’s encryption scheme,4 which is prov-
ably as secure as factoring large numbers. In Rabin’s scheme, 
the private key consists of two large primes p and q, which are 
multiplied to form the public key n   p � q. To encrypt a message 
m, the sender calculates its square and reduces it modulo n: c   
m2 (mod n).

To decrypt a ciphertext, the receiver calculates the square 
roots of c modulo p and q, then combines the resulting values 
using the Chinese Remainder Theorem. Each ciphertext has two 
possible roots modulo p and two roots modulo q (rm (mod p) 
and rm (mod q), leading to four possible plain texts for each 
ciphertext. To allow the receiver to determine which plaintext is 
the correct one, the sender typically adds some redundancy to 
the message (in the work reported in the main article, the reader 
challenge serves this purpose).

The encryption element of Rabin’s scheme is relatively easy to 
implement, requiring only a single multiplication and modu-
lar  reduction. However, modular reduction is a RAM-intensive 
process, a fact that limits the applicability of Rabin’s algorithm 
to memory-constrained devices. To solve this, Adi Shamir5 (and 
 simultaneously David Naccache6) suggested replacing the mod-
ular-reduction step by an addition of a large random multiple of 
n, where |r| ! |n| � 80: c   m2 � r u n.

The decryption algorithm is identical to Rabin’s original scheme. 
Shamir proved the equivalence of this scheme’s security and the 
original Rabin scheme. The reduced scheme is easier to implement 
because it has only multiply and accumulate operations and no 
modular reductions. The multiply-accumulate algorithm has a very 
low RAM footprint when compared to standard modular reduction, 
because it doesn’t need to store the entire ciphertext in memory. 
Instead, a multiplication-by-convolution algorithm can be used to 
calculate small chunks of the output one after the other in an accu-
mulator register, then transmit them as soon as they are ready.

One drawback of this method is the increase in ciphertext size. 
In the original Rabin algorithm, the ciphertext size was n bits, 
but this resource-reduced implementation increases the output 
size to n � r t 2n � 80 bits.

Shamir’s version of Rabin’s scheme replaces the challenge of 
storing  with the challenge of storing the large random number r.  
However, because r is written-to only once per protocol execu-
tion, it can be stored in EEPROM storage, which is plentiful on 
smart cards.

EEPROM is generally not available on low-cost RFID tags, so 
Oren and Feldhofer developed a way to remove this additional 
storage requirement.1 The WIPR scheme replaces the random 
value r with the output of a low-resource reversible stream cipher.

WIPR is a probabilistic scheme that uses randomness to in-
crease its security. The reader issues a different random challenge 
each time it enters the WIPR protocol. This makes it very difficult 
for an adversary to counterfeit a tag by recording its response 
and replaying it later. The tag also uses a different random string 
in each response, making it difficult for an adversary to track a 
tag by sending the tag a similar challenge multiple times and 
looking for a repeated response.

The plaintext payload m consists of the 80-bit random reader 
challenge, the 96-bit EPC unique item identifier (UII), the 320-bit  
ECDSA signature for the UII, and 528 additional random bits. 
Because the RSA and Rabin cryptosystems both rely on the same 
fundamental complexity assumption, a security level comparable 
to 1,024-bit RSA also requires a 1,024-bit Rabin key, resulting in a 
ciphertext size of 2 u 1,024 � 80   2,028 bits.
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large number of transactions before the 
same challenge is repeated.

Third, the tag adds different random 
bytes to its response every time it’s que-
ried. This foils an adversary trying to 
track a certain tag (that it knows from a 
previously recorded challenge-response 
pair) by masquerading as a reader, 

 repeatedly sending the same challenge 
to the tag, and checking whether the 
tag returns the previously recorded re-
sponse packet. The adversary would 
have to engage a tag in an impractically 
large number of transactions with the 
same challenge before the tag generates 
the same response twice. 

Fourth, even though a reverse- 
engineered tag can be cloned, the only 
tag information of interest in cloning 
is a single signature, Sk(UII), which 
can only be used with a specific UII. 
(Note that SkS(UII) means the mes-
sage “UII” is signed using the signing 
key kS.) Thus, even an adversary who 

Figure 1. A logistic view of the proposed public-key-based supply-chain system based on unique item identifiers (UII) and the 
WIPR encryption scheme. Its members include a supply-chain owner, a tag manufacturer, a secure reader module representing a 
merchant’s point-of-sale terminal, and an individual RFID tag. Private keys (signing and decryption) are shown in red.
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has physically probed the tag to dis-
cover its full payload value can’t forge 
a new tag with a different UII. This ef-
fectively creates a break-once-run-once 
situation for tags, such that counter-
feited merchandise must bear a limited 
number of well-known IDs that can be 
more easily tracked and blacklisted.

Finally, a compromised reader can’t 
be used to forge new tags because it has 
only the verification key and not the 
signing key. A compromised reader can, 
however, be used to track tags from any 
vendors for which it has the keys. 

Implementation Choices
To implement our system, we first se-
lected public-key signature and encryp-
tion schemes that offer suitable security 
while staying within the stringent hard-
ware requirements of low-cost EPC tags. 
Because EPC tags are passively powered 
by the reader, we had to minimize their 
energy consumption to maximize their 
usable range. In practical terms, this re-
stricted the total gate budget of RFID 
tag chips, including security function-
ality, to approximately 10,000 NAND 
gate equivalents (GEs).5 Strong cryp-
tographic elements, especially of the 
public-key variety, have been tradition-
ally considered too complicated for this 
limited gate budget.6 The limited gate 
budget also imposes a severe restraint 
on the amount of RAM and ROM we 
can place on the tag.

Because the UII is actually signed out-
side the tag and only stored in the tag’s 
memory, we weren’t concerned with 
the signature scheme’s  implementation 
cost but only with its storage cost. So 
we searched for a public-key signature 
scheme with relatively short signatures 
and finally chose the  Elliptic Curve 
Data Security Algorithm (ECDSA). For 
a security level comparable to 1,024-bit 
RSA, the ECDSA cipher uses a 160-bit 
key and generates 320-bit signatures.

We chose WIPR as the public-key 
encryption scheme for communication 
between the reader and the tag because 
it has one of the smallest chip-area re-
quirements of any public-key encryption 

scheme, making it simple enough to place 
on a low-cost RFID tag.4 It also has a rel-
atively large payload size (almost 1,000 
bits per ciphertext), making it versatile 
enough to support our specific applica-
tion. For a security level comparable to 
1,024-bit RSA, the WIPR protocol gener-
ates a 2,208-bit ciphertext.

Our next challenge was to introduce 
the cryptographic challenge-response 
protocol into the preexisting EPC air 
interface.1 Our protocol requires send-
ing a challenge to the tag and verifying 
its response. Because the EPC speci-
fication doesn’t specifically include 
challenge-and-response messages, we 
needed to find a way to retrofit the ex-
isting infrastructure so that it would 
support our system. Furthermore, 
WIPR messages are relatively long and 
must be split into parts to be transmit-
ted and then reassembled by the reader.

As suggested by Daniel Bailey and 
Ari Juels,7 we implemented the chal-
lenge-response protocol using memory-
mapped I/O and regular EPC messages. 
Writing the challenge to a certain region 
in the tag’s memory activates the WIPR 
protocol, while reading the response 
from another region invokes the actual 
encryption operation. As described in 
the sidebar, the WIPR ciphertext can be 
calculated byte by byte, reducing the 
amount of physical memory required 
to store the encryption result.

Figure 3 illustrates our protocol im-
plementation. The left side shows how 
a standard (non-WIPR) tag identifies 
itself to a non-WIPR RFID reader. In 
contrast to normal tags, the WIPR tag 
does not transmit its UII over the air 
unencrypted, which would allow the 
tag to be tracked by rogue readers. In-
stead, it returns a special semi-random 
ID that partially identifies the tag while 
indicating that this tag supports the 
WIPR protocol. This ID is created by 
splitting the 96-bit EPC address space 
into both a fixed part and a random 
part that is recalculated every time the 
RFID tag reboots. If the highest degree 
of privacy is required, the fixed ID part 
could provide no information about the 

tagged item, other than the fact that it 
supports WIPR. It’s also possible to sac-
rifice some privacy for utility by embed-
ding a limited amount of information 
about the tagged item in the fixed part. 
For example, the fixed ID part could 
contain the tagged item’s type with-
out explicitly identifying it, just like a 
standard UPC optical barcode. Henry 
Holtzman and his colleagues describe 
a  similar privacy-protection method 
 using pseudo-IDs.8

If the reader doesn’t support WIPR, 
the inventory process concludes at this 
stage with the reader having only par-
tial knowledge of the item’s identity, 
thus preventing the user from being 
tracked. If the reader supports WIPR, it 
will proceed by writing the challenge to 
a special memory area on the tag, then 
reading the encrypted response from 
another memory area. The reader will 
then be able to decrypt the response us-
ing its stored WIPR private key, thus 
obtaining the full UII and precisely 
identifying the tagged item.

In Figure 3, Tchallenge is the time it 
takes the reader to send the challenge 
to the tag. Tencrypt is the time it takes 
the tag to encrypt, and Tresponse is the 
time it takes the tag to send its response 
back to the reader. Tchallenge and Tresponse 
are determined by the link speed be-
tween the tag and the reader, but Tencrypt 
is solely a function of the WIPR algo-
rithm’s implementation. Only a part of 
Tresponse (marked Tresponse c) happens after 
encryption is completed. As we discuss 
in the sidebar, this is due to a special 
property of the WIPR algorithm that 
allows the ciphertext to be generated 
byte by byte.

We evaluated RFID readers from sev-
eral vendors and discovered that they all 
shared a common design, consisting of 
a firmware module and associated host 
software. The firmware module handles 
the EPC air interface and state machine, 
and communicates with the software 
running on the host computer using a 
relatively high-level protocol. Although 
modifying the host computer’s software 
is relatively simple,  updating the reader’s 
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embedded firmware module is more 
complex and sometimes impossible. 
By using only standard memory-write 
and memory-read commands, which 
are mandatory in the EPC specifica-
tion and as such already supported by 
the firmware, we made sure that stan-
dard off-the-shelf reader firmware will 
 immediately support our new protocol. 
To support WIPR, stores only need to 
update the software running on the POS 
terminal.

Prototype Implementation 
Details
After concluding the design, we imple-
mented the scheme and measured its 
performance using real EPC equipment.

Figure 4 shows the system setup. It 
consists of several standard off-the-shelf 

EPC-compliant RFID tags, a standard 
off-the-shelf RFID reader (the CAEN 
RFID reader), and several PC software 
elements that support WIPR.

A fully deployed solution would use 
an inexpensive ASIC-based passive 
tag, but we were interested in a system 
optimized for adaptability, allowing 
easy and fast prototype development. 
For this purpose, we selected the IAIK 
UHF Demotag, a hardware-prototyp-
ing platform.9 While the Demotag is 
battery-powered, it behaves like a pas-
sive EPC-compliant tag. It features an 
ATMega128 microcontroller with a 
programming interface that uses the 
Joint Test Action Group (JTAG) stan-
dard and in-system programming. In 
addition to the radio frequency (RF) 
interface, the Demotag also supports a 

serial interface, which we used to con-
figure the tag. We developed the tag 
software on a Linux workstation,  using 
Rowley CrossStudio for AVR.

We selected the CAEN DK828EU 
reader, because it’s relatively easy to 
control in Matlab and conforms with 
European Telecommunications Stan-
dards Institute’s power requirements. 
To calculate the reader’s average read 
rate, we measured how long it took 
the reader software to read different-
sized buffers from the tag’s general- 
purpose memory bank using EPC 
C1G2 BLOCK_READ commands. By 
 measuring the difference in response 
times for differently sized blocks 
(varying between 8 and 272 bits), we 
were able to measure the read rate 
while keeping constant any additional 

Reader Non-WIPR tag

Query Query

Ack(RN16) Ack(RN16)

Req_RN(RN16)

Read(handle, response)

Write (handle, challenge)[80 bits]

RN16 RN16

handle

handle

response

[2208 bits]

{Special WIPR Ull}Ull

Reader WIPR tag

Tchallenge

Tencrypt

Tresponse

Tresponse ′

Figure 3. Implementing cryptographic challenge-response using standard EPC commands. The WIPR tag does not transmit its 
UII over the air unencrypted, but instead returns a special semirandom ID that partially identifies the tag while indicating that 
this tag supports the WIPR protocol. Tchallenge is the time it takes the reader to send the challenge to the tag; Tencrypt, the time it 
takes the tag to encrypt; and Tresponse the time it takes the tag to send its response back to the reader. (Note that RN16 is a 16-bit 
random number.)
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delays related to the operation, such 
as radio power-on/power-off times, 
propagation delays, and the execution 
of the EPC C1G2 singulation proto-
col. Our tests showed that our reader 
had an average read rate of approxi-
mately 15 kilobits per second, a fact 
that dominated our system’s overall 
performance. 

On the PC side, we wrote a software 
suite to deliver functionality to each of 
the supply chain’s three members as 
identified in Figure 1:

The supply-chain-owner manage-
ment application creates encryption 
and signature key pairs and signs 
UIIs with the private-signing key. 
The tag-manufacturer management 
application imports lists of signed 
UIIs and burns them into blank tags. 
The POS application is simple to use 
and implements the WIPR protocol 
at the point of sale.

The information exchanged among the 
three programs is limited, exemplifying 
the limited trust the system  requires. 
The tag-manufacturer application 
 receives only the public-encryption 
key kE and a list of signed IDs, while 
the POS application receives the pri-
vate  decryption key kD and the public- 
verification key kV.

To use our system, the supply-chain 
owner first generates the encryption 
and signature key pairs, then imports 
a database of items with unsigned UIIs 
(provided in the real world from a 
 logistics software) and signs them  using 
the private-signing key kS.  Finally, the 
 supply-chain owner creates two files: 
one containing kE and a list of signed 
UIIs (to be sent to the tag manufac-
turer), and the other containing kD and 
kV (to be sent to the POS terminal).

The tag manufacturer loads the file 
from the supply-chain owner, then con-
nects a sequence of blank tags to the 

tag manufacturer’s workstation. Each 
tag is programmed with the public- 
encryption key kE and a single signed 
UII. Other than by performing the 
WIPR protocol, there is no command 
that extracts this signed payload from 
the tag unless it is reverse engineered.

We designed the POS application to 
be as similar as possible to conventional 
POS terminal software. It features a sim-
ple GUI that’s usable on a touchscreen. 
The software continuously scans for 
RFID tags in its vicinity. When it finds 
a tag, it displays the tagged item’s pic-
ture and lists its price. If the tag is identi-
fied as a WIPR tag, the software carries 
out the WIPR protocol and optionally 
sounds an alarm if the authentication 
process fails.

A video demonstration of our POS 
system, including key creation and 
distribution and POS operation, is 
available online at http://youtu.be/
ZFrT1xRTorE. As the video shows, the 
system works well in a mixed-tag en-
vironment. From the user’s viewpoint, 
WIPR and non-WIPR tags exhibit the 
same behavior, other than a slight delay 
due to the WIPR protocol processing.

Performance Evaluation
In earlier work,4 we showed that an 
ASIC implementation of WIPR has an 
acceptable gate count (approximately 
4,700 GEs) and power consumption 
(mean current draw of 14 μA). For 
comparison, Martin Feldhofer and 
his colleagues described an Advanced 
 Encryption Standard symmetric key 
 cipher implementation with a gate 
count of 3,400 GEs and a mean cur-
rent draw of 3 μA.10 

To learn whether the cryptographic 
operation is indeed an inherent bot-
tleneck or whether it can be sped up 
enough to make the system usable, we 
considered the Demotag’s general-pur-
pose 8-bit microcontroller to be inher-
ently slower than a custom ASIC im-
plementation. Indeed, a naive software 
WIPR protocol implementation that 
was  functionally identical to the ASIC’s 
implementation took an unacceptable 

Figure 4. System implementation setup. It consists of standard off-the-shelf EPC-
compliant RFID tags, a standard off-the-shelf RFID reader, and WIPR-compatible PC 
software elements to support the supply-chain owner, tag-manufacturer, and POS 
applications.

Standard EPC tag

IAIK UHF demotag
CAEN RFID reader

Serial link

EPC C1G2 air interface

Serial link

Tag-manufacturer application

File
transfer

Supply-chain owner application

File
transfer

Point-of-sale application
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7 seconds to perform encryption. How-
ever, as we’ve shown elsewhere in more 
detail,11 we were able to speed up the 
software implementation by two orders 
of magnitude.

We accelerated WIPR by caching two 
encryption components: the  random 
padding r (1,104 bits) and the pay-
load m (496 bits). We evaluated three 
 possible scenarios: 

the naive implementation, which 
doesn’t cache the random padding 
of m and the long random number 
r, but instead recalculates them on 
demand; 
caching m in SRAM; and 
caching the values of both m and r. 

We discovered that caching data in 
SRAM has a dramatic effect on the exe-
cution time. The first scenario required 
7 seconds to encrypt; the second sce-
nario took 1.18 seconds; and the third 
scenario took just 180 ms.

Other than encryption itself, we 
found another serious bottleneck in 
communication, with the dominant 
parameter being the number of round-
trips made by the reader. The particu-
lar reader we used didn’t recognize the 
concept of sessions and repeated the 
RFID singulation process with the tag 
every time it sent a command. This be-
havior significantly slowed down the 
protocol, so sending the 80-bit chal-
lenge took 200 ms and reading back 
the encrypted response took 460 ms. 
However, we can reduce both of these 
times significantly.

First, we could improve the time im-
mediately with better use of the air 
 interface. By sending the challenge in a 
single 80-bit packet and keeping the tag 
in the SECURED state, Tchallenge can 
decrease from 200 ms to an estimated 
85 ms. Next, keeping the tag powered 
in the SECURED state throughout the 
response phase would remove the un-
necessary singulation steps and save 
even more time. Finally, it’s possible to 
pipeline the encryption and response 
transmission. Using WIPR, the tag can 

compute the ciphertext in small blocks 
and send them to the reader as soon as 
they’re ready. The total time to perform 
the entire protocol in this case is equiv-
alent to the time required to power on 
the tag and send it a challenge (85 ms), 
the time required for the tag to calcu-
late the full response (180 ms), and the 
time required to send the final chunk, 
which is ready only after encryption 
is finished (60 ms). Under these minor 
modifications, we estimate the entire 
protocol (including both identification 
and authentication) will take 325 ms.

For a more dramatic optimization, 
the entire 276-byte response can be 
read by a single read command, to be 
issued immediately after the challenge 
is sent. This is possible because the tag 
can be designed to concurrently back-
scatter the ciphertext’s initial bytes 
while it calculates the following ones. 
Because the data link takes only 112 ms 
to transfer 2,208 bits, the entire pro-
tocol time is dominated in this case by 
Tencrypt, leading to a total estimated 
time of 265 ms for the entire protocol. 
For comparison, the execution time of 
a standard query-response is approxi-
mately 40 ms.

W IPR-enabled tags show 
a practical design for 
a secure RFID supply-
chain system that uses 

public-key cryptography. They are fully 
compatible with the existing ecosystem 
of nonsecure tags, readers, and termi-
nals. Their use of public-key cryptog-
raphy reduces trust issues between the 
supply-chain owner and tag manufac-
turer,  ensures that reverse- engineered 
tags do not compromise the whole 
system’s  security, and protects user pri-
vacy. We conclude that the public-key 
approach is a viable design alternative 
for supply-chain RFID EPC tags. 
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