
52 PERVASIVE computing Published by the IEEE CS Q 1536-1268/14/$31.00 © 2014 IEEE

A Secure Supply-Chain
RFID System that
Respects Your Privacy

I ntroducing RFID tags based on the Elec-
tronic Product Code (EPC) standard1
into the global supply chain is one of
the world’s most ambitious pervasive
computing projects. EPC tags are low-

cost wireless devices that associate a computer-
readable ID to physical objects. They were

designed as an upgrade to
the familiar 14-digit Univer-
sal Product Code (UPC) bar
code. In contrast to UPC bar
codes, which signify only that
an item is of a particular type,
EPC tags can carry more data,
including a 96-bit globally
unique item identifier (UII) for
each individual tagged item.
EPC tags communicate with
tag readers using UHF radio,

letting readers interrogate them from a distance
of several meters—even with no line of sight
between the tag and the reader.

Although the increased data capacity and
interrogation range make EPC tags useful
for supply-chain operators, these same ca-
pabilities pose privacy issues that didn’t ex-
ist with optical bar codes.2 For example, by
placing EPC readers in multiple locations and
searching for any RFID tags a person carries,
such as RFID-tagged clothes or banknotes, it

 becomes possible to track individuals moving
between the locations. In a broad survey of
the RFID security and privacy threat land-
scape, Pawel Rotter argues that the demand
for security increases with the potential dam-
age to users and the potential gain to attack-
ers.3 Encrypting the communication between
tags and readers would allow only a legiti-
mate reader to read a tag’s UII and thus pre-
vent eavesdroppers from learning anything
from a recorded session.

Low-cost RFID tags are generally susceptible
to reverse engineering, and a captured tag can
also be cloned and attached to many counter-
feit items. A track-and-trace network is a basic
anticounterfeiting technique that links all of a
supply chain’s EPC readers to a central server.
Every time a reader that’s connected to the net-
work accesses a tagged item, the item’s current
physical location is tracked and updated on the
central server. A counterfeited item will exhibit
an unusual and detectable usage pattern, such
as being present in two different countries at
the same time, and can be blacklisted. To avoid
blacklisting, a more sophisticated attacker will
create fake tags that return different arbitrary
or randomized UIIs. This requires a further an-
ticounterfeiting mechanism: cryptographically
signed UIIs that prevent attackers from generat-
ing their own arbitrary UIIs.

A prototype RFID system uses public-key cryptography to simplify
deployment, reduce trust issues between the supply-chain owners and
tag manufacturers, and protect user privacy. It demonstrates that
high-security and standard EPC tags can coexist and share the same
infrastructure.

Alex Arbit
Tel-Aviv University

Yossef Oren
Columbia University

Avishai Wool
Tel-Aviv University

F E A T U R E : R F I D

PC-13-02-oren.indd 52 03/04/14 3:19 PM

APRIL–JUNE 2014 PERVASIVE computing 53

Because of the very low resources
available on EPC tags, public-key cryp-
tography is generally considered too
complicated to deploy on tag hardware—
leaving symmetric-key cryptography as
the primary option for such systems. Un-
fortunately, symmetric-key cryptography
imposes negative trust issues between the
various stakeholders. Furthermore, if a
single tag is reverse-engineered and the
symmetric key is leaked, the whole sys-
tem’s security collapses. Here, we present
an approach to secure the EPC supply
chain using public-key cryptography to
protect the interests of all stakeholders:
supply-chain owners, merchants, and
consumers.

System Design
The crucial element in our system is
the WIPR (Weizmann-IAIK [Institute
for Applied Information Processing
and Communications] Public Key
for RFID) encryption scheme (see the
sidebar).4 WIPR has a low resource
footprint—full-strength WIPR en-
cryption can be implemented even
within the limited resources of an
EPC tag. We created a full system to
demonstrate our approach, including
software usable by various entities
in the supply chain, a fully EPC-
compliant UHF tag implementing
WIPR in custom firmware, and a pro-
totype point-of-sale (POS) terminal
that uses an off-the-shelf RFID reader
and supports both encrypted and un-
encrypted tag communication while
strictly operating within the standard
EPC air-interface specification.

Figure 1 shows a logistic view of our
system, representing the members of a
secure RFID supply chain: a supply-
chain owner who wishes to use RFID
technology but doesn’t manufacture
tags; the tag manufacturer that pro-
duces and deploys many tags on be-
half of the supply-chain owner; the
merchant, who owns the POS termi-
nal connected to an individual reader
j; and an individual RFID tag i. Each
tag is attached to a particular piece of
merchandise in the system. The reader

is the device that communicates with
the tags.

The parties’ interests differ. The
supply-chain owner requires UII sig-
natures that can’t be forged and UIIs
that no other party, including the
manufacturer, can sign. The owner
also requires that if and when tags are
reverse- engineered and all their private
data is extracted, the attacker can’t do
more than clone the specific tags that
were reversed. In particular, a tag’s pri-
vate data should not allow the attacker
to generate new signatures on UIIs.

The manufacturer needs access to the
signed UIIs as well as the cryptographic
keys that must be written to the tags.
The merchant’s reader must be able to
communicate with the tags and verify
the UII signatures. Finally, the cus-
tomer holding the tag needs assurance
that adversaries can’t eavesdrop on the
tag’s communication with the reader
and so requires the communication be-
tween tag and reader to be encrypted.
Further, the customer needs assurance
that a rogue reader won’t be able to
 either read the tag’s data or identify and
track the tag.

To meet these conflicting require-
ments, our system uses two pairs of
public-private keys:

a private-signing key, kS, together
with its public-verification key, kV,
and
a private-decryption key, kD together
with its public-encryption key, kE.

It uses the pair (kS, kV) to sign and
verify UIIs and the pair (kD, kE) to
 authenticate the reader to the tag and
to encrypt and decrypt the commu-
nication between them. The supply-
chain owner generates all the key ma-
terial. The signing key kS never leaves
the supply-chain owner’s premises.
Instead, the supply-chain owner gen-
erates a list of signed UIIs and sends
them to the tag manufacturer, together
with the public-encryption key kE.
Without the private-signing key, the
tag manufacturer can’t create arbitrary

signed UIIs—in other words, the owner
doesn’t need to trust the manufacturer.
The manufacturer produces all the tags
and embeds within each tag the public-
encryption key kE, and a single signed
UII from the list.

The use of public-key cryptography
guarantees that an adversary gains
nothing from reverse engineering an
individual tag other than the single sig-
nature for that individual tag’s UII and
a public key that lets it send encrypted
messages to the reader but not decrypt
them. Finally, the supply-chain owner
sends the decryption key kD and the
signature-verification key kV to the
merchant’s reader, so the reader can
decrypt the tag messages and verify the
UII signatures.

Data Flow and Communication
Protocol
Figure 2 shows our system’s data flow
and communication protocol in the ac-
tions of three parties: the supply-chain
owner’s offline key generation and
signed UII generation and the commu-
nication protocol between the reader
and an individual tag. The manufac-
turer doesn’t appear in the figure be-
cause it doesn’t participate in the com-
munication protocol.

The reader starts the protocol by ac-
tivating the tag and sending it a random
challenge. The tag responds by encrypt-
ing this challenge together with the
tag’s signed UII and additional random
bytes, then sending this data back to
the reader. The tag’s response also au-
thenticates the reader to the tag because
a rogue reader, lacking the decryp-
tion key kD, can’t decrypt it. Finally,
the reader decrypts the tag’s response,
 verifies that it contains the correct chal-
lenge and UII signature, and outputs
the UII.

This scheme has several beneficial
properties.

First, the use of encryption means
that the adversary can’t discover the UII
or the UII’s signature by intercepting
over-the-air communications. Unless
the adversary knows how to crack the

PC-13-02-oren.indd 53 03/04/14 3:19 PM

54 PERVASIVE computing www.computer.org/pervasive

FEATURE: RFID

encryption scheme, the only practical
way to recover the tag’s payload would
be to reverse-engineer the tag or com-
promise a reader.

Second, the reader issues a fresh
 random challenge in every protocol
 execution. This foils an adversary that
tries to impersonate a tag by recording

challenge-response pairs used in success-
ful transactions and waiting for a reader
challenge to be repeated. The adversary
would have to record an impractically

Y ossef Oren and Martin Feldhofer developed the WIPR
(Weizmann-IAIK [Institute for Applied Information Pro-

cessing and Communications] Public Key for RFID) low-resource,
public-key encryption scheme.1,2 Jiang Wu and Douglas Stinson
subsequently proposed an improvement that claims to reduce
hardware requirements and protect against some attacks.3

WIPR is a variant of Rabin’s encryption scheme,4 which is prov-
ably as secure as factoring large numbers. In Rabin’s scheme,
the private key consists of two large primes p and q, which are
multiplied to form the public key n p � q. To encrypt a message
m, the sender calculates its square and reduces it modulo n: c
m2 (mod n).

To decrypt a ciphertext, the receiver calculates the square
roots of c modulo p and q, then combines the resulting values
using the Chinese Remainder Theorem. Each ciphertext has two
possible roots modulo p and two roots modulo q (rm (mod p)
and rm (mod q), leading to four possible plain texts for each
ciphertext. To allow the receiver to determine which plaintext is
the correct one, the sender typically adds some redundancy to
the message (in the work reported in the main article, the reader
challenge serves this purpose).

The encryption element of Rabin’s scheme is relatively easy to
implement, requiring only a single multiplication and modu-
lar reduction. However, modular reduction is a RAM-intensive
process, a fact that limits the applicability of Rabin’s algorithm
to memory-constrained devices. To solve this, Adi Shamir5 (and
 simultaneously David Naccache6) suggested replacing the mod-
ular-reduction step by an addition of a large random multiple of
n, where |r| ! |n| � 80: c m2 � r u n.

The decryption algorithm is identical to Rabin’s original scheme.
Shamir proved the equivalence of this scheme’s security and the
original Rabin scheme. The reduced scheme is easier to implement
because it has only multiply and accumulate operations and no
modular reductions. The multiply-accumulate algorithm has a very
low RAM footprint when compared to standard modular reduction,
because it doesn’t need to store the entire ciphertext in memory.
Instead, a multiplication-by-convolution algorithm can be used to
calculate small chunks of the output one after the other in an accu-
mulator register, then transmit them as soon as they are ready.

One drawback of this method is the increase in ciphertext size.
In the original Rabin algorithm, the ciphertext size was n bits,
but this resource-reduced implementation increases the output
size to n � r t 2n � 80 bits.

Shamir’s version of Rabin’s scheme replaces the challenge of
storing with the challenge of storing the large random number r.
However, because r is written-to only once per protocol execu-
tion, it can be stored in EEPROM storage, which is plentiful on
smart cards.

EEPROM is generally not available on low-cost RFID tags, so
Oren and Feldhofer developed a way to remove this additional
storage requirement.1 The WIPR scheme replaces the random
value r with the output of a low-resource reversible stream cipher.

WIPR is a probabilistic scheme that uses randomness to in-
crease its security. The reader issues a different random challenge
each time it enters the WIPR protocol. This makes it very difficult
for an adversary to counterfeit a tag by recording its response
and replaying it later. The tag also uses a different random string
in each response, making it difficult for an adversary to track a
tag by sending the tag a similar challenge multiple times and
looking for a repeated response.

The plaintext payload m consists of the 80-bit random reader
challenge, the 96-bit EPC unique item identifier (UII), the 320-bit
ECDSA signature for the UII, and 528 additional random bits.
Because the RSA and Rabin cryptosystems both rely on the same
fundamental complexity assumption, a security level comparable
to 1,024-bit RSA also requires a 1,024-bit Rabin key, resulting in a
ciphertext size of 2 u 1,024 � 80 2,028 bits.

REFERENCES

 1. Y. Oren and M. Feldhofer, “WIPR—Public-Key Identification on
Two Grains of Sand,” Proc. Workshop on RFID Security 2008, 2008,
pp. 15–27.

 2. Y. Oren and M. Feldhofer, “A Low-Resource Public-Key Identifica-
tion Scheme for RFID Tags and Sensor Nodes,” Proc. 2nd Int’l Conf.
 Wireless Network Security (WiSec 09), ACM, 2009, pp. 59–68.

 3. J. Wu and D.R. Stinson, “How to Improve Security and Reduce Hard-
ware Demands of the WIPR RFID Protocol,” Proc. 2009 IEEE Int’l Conf.
RFID (RFID 09), 2009, pp. 192–199.

 4. M. Rabin, Digitalized Signatures and Public-Key Functions as Intractable
as Factorization, tech. report, MIT, 1979.

 5. A. Shamir, “Memory Efficient Variants of Public-Key Schemes for
Smart Card Applications,” Proc. Advances in Cryptology (EuroCrypt
94), LNCS 950, 1995, p. 445.

 6. D. Naccache, Method, Sender Apparatus and Receiver Apparatus for
Modulo Operation, European Patent Application 91402958.2, filed
27 Oct. 1992.

What is WIPR?

PC-13-02-oren.indd 54 03/04/14 3:19 PM

APRIL–JUNE 2014 PERVASIVE computing 55

large number of transactions before the
same challenge is repeated.

Third, the tag adds different random
bytes to its response every time it’s que-
ried. This foils an adversary trying to
track a certain tag (that it knows from a
previously recorded challenge-response
pair) by masquerading as a reader,

 repeatedly sending the same challenge
to the tag, and checking whether the
tag returns the previously recorded re-
sponse packet. The adversary would
have to engage a tag in an impractically
large number of transactions with the
same challenge before the tag generates
the same response twice.

Fourth, even though a reverse-
engineered tag can be cloned, the only
tag information of interest in cloning
is a single signature, Sk(UII), which
can only be used with a specific UII.
(Note that SkS(UII) means the mes-
sage “UII” is signed using the signing
key kS.) Thus, even an adversary who

Figure 1. A logistic view of the proposed public-key-based supply-chain system based on unique item identifiers (UII) and the
WIPR encryption scheme. Its members include a supply-chain owner, a tag manufacturer, a secure reader module representing a
merchant’s point-of-sale terminal, and an individual RFID tag. Private keys (signing and decryption) are shown in red.

Tag manufacturer

List of signed Ulls

Signed Ull i

Tag i

Encryption key KE

Encryption key KE

KE

KD,KV

WIPR

Reader secure module j

Supply-chain owner

Signing key KS
Verification key KV

Decryption key KD
Encryption key KE

Verification key Kv Decryption key KD

KE

Figure 2. A secure RFID supply-chain system based on public-key cryptography. The merchant’s reader initiates the communication
protocol by activating the tag and sending it a random challenge. (Note that “E()” stands for the encryption function.)

Reader
(knows kV,kD)

Tag
(knows kE)

Generate
challenge

Challenge

EKE(Challenge, Ull, SKs(Ull))

Encrypt challenge
and signed payload

Decrypt message using kD
Verify challenge

Verify signed payload using kV
Output UII

Supply chain owner
(knows kS)

Generate UII
Sign UII

Store payload

Ull, SKs(Ull)

PC-13-02-oren.indd 55 03/04/14 3:19 PM

56 PERVASIVE computing www.computer.org/pervasive

FEATURE: RFID

has physically probed the tag to dis-
cover its full payload value can’t forge
a new tag with a different UII. This ef-
fectively creates a break-once-run-once
situation for tags, such that counter-
feited merchandise must bear a limited
number of well-known IDs that can be
more easily tracked and blacklisted.

Finally, a compromised reader can’t
be used to forge new tags because it has
only the verification key and not the
signing key. A compromised reader can,
however, be used to track tags from any
vendors for which it has the keys.

Implementation Choices
To implement our system, we first se-
lected public-key signature and encryp-
tion schemes that offer suitable security
while staying within the stringent hard-
ware requirements of low-cost EPC tags.
Because EPC tags are passively powered
by the reader, we had to minimize their
energy consumption to maximize their
usable range. In practical terms, this re-
stricted the total gate budget of RFID
tag chips, including security function-
ality, to approximately 10,000 NAND
gate equivalents (GEs).5 Strong cryp-
tographic elements, especially of the
public-key variety, have been tradition-
ally considered too complicated for this
limited gate budget.6 The limited gate
budget also imposes a severe restraint
on the amount of RAM and ROM we
can place on the tag.

Because the UII is actually signed out-
side the tag and only stored in the tag’s
memory, we weren’t concerned with
the signature scheme’s implementation
cost but only with its storage cost. So
we searched for a public-key signature
scheme with relatively short signatures
and finally chose the Elliptic Curve
Data Security Algorithm (ECDSA). For
a security level comparable to 1,024-bit
RSA, the ECDSA cipher uses a 160-bit
key and generates 320-bit signatures.

We chose WIPR as the public-key
encryption scheme for communication
between the reader and the tag because
it has one of the smallest chip-area re-
quirements of any public-key encryption

scheme, making it simple enough to place
on a low-cost RFID tag.4 It also has a rel-
atively large payload size (almost 1,000
bits per ciphertext), making it versatile
enough to support our specific applica-
tion. For a security level comparable to
1,024-bit RSA, the WIPR protocol gener-
ates a 2,208-bit ciphertext.

Our next challenge was to introduce
the cryptographic challenge-response
protocol into the preexisting EPC air
interface.1 Our protocol requires send-
ing a challenge to the tag and verifying
its response. Because the EPC speci-
fication doesn’t specifically include
challenge-and-response messages, we
needed to find a way to retrofit the ex-
isting infrastructure so that it would
support our system. Furthermore,
WIPR messages are relatively long and
must be split into parts to be transmit-
ted and then reassembled by the reader.

As suggested by Daniel Bailey and
Ari Juels,7 we implemented the chal-
lenge-response protocol using memory-
mapped I/O and regular EPC messages.
Writing the challenge to a certain region
in the tag’s memory activates the WIPR
protocol, while reading the response
from another region invokes the actual
encryption operation. As described in
the sidebar, the WIPR ciphertext can be
calculated byte by byte, reducing the
amount of physical memory required
to store the encryption result.

Figure 3 illustrates our protocol im-
plementation. The left side shows how
a standard (non-WIPR) tag identifies
itself to a non-WIPR RFID reader. In
contrast to normal tags, the WIPR tag
does not transmit its UII over the air
unencrypted, which would allow the
tag to be tracked by rogue readers. In-
stead, it returns a special semi-random
ID that partially identifies the tag while
indicating that this tag supports the
WIPR protocol. This ID is created by
splitting the 96-bit EPC address space
into both a fixed part and a random
part that is recalculated every time the
RFID tag reboots. If the highest degree
of privacy is required, the fixed ID part
could provide no information about the

tagged item, other than the fact that it
supports WIPR. It’s also possible to sac-
rifice some privacy for utility by embed-
ding a limited amount of information
about the tagged item in the fixed part.
For example, the fixed ID part could
contain the tagged item’s type with-
out explicitly identifying it, just like a
standard UPC optical barcode. Henry
Holtzman and his colleagues describe
a similar privacy-protection method
 using pseudo-IDs.8

If the reader doesn’t support WIPR,
the inventory process concludes at this
stage with the reader having only par-
tial knowledge of the item’s identity,
thus preventing the user from being
tracked. If the reader supports WIPR, it
will proceed by writing the challenge to
a special memory area on the tag, then
reading the encrypted response from
another memory area. The reader will
then be able to decrypt the response us-
ing its stored WIPR private key, thus
obtaining the full UII and precisely
identifying the tagged item.

In Figure 3, Tchallenge is the time it
takes the reader to send the challenge
to the tag. Tencrypt is the time it takes
the tag to encrypt, and Tresponse is the
time it takes the tag to send its response
back to the reader. Tchallenge and Tresponse
are determined by the link speed be-
tween the tag and the reader, but Tencrypt
is solely a function of the WIPR algo-
rithm’s implementation. Only a part of
Tresponse (marked Tresponse c) happens after
encryption is completed. As we discuss
in the sidebar, this is due to a special
property of the WIPR algorithm that
allows the ciphertext to be generated
byte by byte.

We evaluated RFID readers from sev-
eral vendors and discovered that they all
shared a common design, consisting of
a firmware module and associated host
software. The firmware module handles
the EPC air interface and state machine,
and communicates with the software
running on the host computer using a
relatively high-level protocol. Although
modifying the host computer’s software
is relatively simple, updating the reader’s

PC-13-02-oren.indd 56 03/04/14 3:19 PM

APRIL–JUNE 2014 PERVASIVE computing 57

embedded firmware module is more
complex and sometimes impossible.
By using only standard memory-write
and memory-read commands, which
are mandatory in the EPC specifica-
tion and as such already supported by
the firmware, we made sure that stan-
dard off-the-shelf reader firmware will
 immediately support our new protocol.
To support WIPR, stores only need to
update the software running on the POS
terminal.

Prototype Implementation
Details
After concluding the design, we imple-
mented the scheme and measured its
performance using real EPC equipment.

Figure 4 shows the system setup. It
consists of several standard off-the-shelf

EPC-compliant RFID tags, a standard
off-the-shelf RFID reader (the CAEN
RFID reader), and several PC software
elements that support WIPR.

A fully deployed solution would use
an inexpensive ASIC-based passive
tag, but we were interested in a system
optimized for adaptability, allowing
easy and fast prototype development.
For this purpose, we selected the IAIK
UHF Demotag, a hardware-prototyp-
ing platform.9 While the Demotag is
battery-powered, it behaves like a pas-
sive EPC-compliant tag. It features an
ATMega128 microcontroller with a
programming interface that uses the
Joint Test Action Group (JTAG) stan-
dard and in-system programming. In
addition to the radio frequency (RF)
interface, the Demotag also supports a

serial interface, which we used to con-
figure the tag. We developed the tag
software on a Linux workstation, using
Rowley CrossStudio for AVR.

We selected the CAEN DK828EU
reader, because it’s relatively easy to
control in Matlab and conforms with
European Telecommunications Stan-
dards Institute’s power requirements.
To calculate the reader’s average read
rate, we measured how long it took
the reader software to read different-
sized buffers from the tag’s general-
purpose memory bank using EPC
C1G2 BLOCK_READ commands. By
 measuring the difference in response
times for differently sized blocks
(varying between 8 and 272 bits), we
were able to measure the read rate
while keeping constant any additional

Reader Non-WIPR tag

Query Query

Ack(RN16) Ack(RN16)

Req_RN(RN16)

Read(handle, response)

Write (handle, challenge)[80 bits]

RN16 RN16

handle

handle

response

[2208 bits]

{Special WIPR Ull}Ull

Reader WIPR tag

Tchallenge

Tencrypt

Tresponse

Tresponse ′

Figure 3. Implementing cryptographic challenge-response using standard EPC commands. The WIPR tag does not transmit its
UII over the air unencrypted, but instead returns a special semirandom ID that partially identifies the tag while indicating that
this tag supports the WIPR protocol. Tchallenge is the time it takes the reader to send the challenge to the tag; Tencrypt, the time it
takes the tag to encrypt; and Tresponse the time it takes the tag to send its response back to the reader. (Note that RN16 is a 16-bit
random number.)

PC-13-02-oren.indd 57 03/04/14 3:19 PM

58 PERVASIVE computing www.computer.org/pervasive

FEATURE: RFID

delays related to the operation, such
as radio power-on/power-off times,
propagation delays, and the execution
of the EPC C1G2 singulation proto-
col. Our tests showed that our reader
had an average read rate of approxi-
mately 15 kilobits per second, a fact
that dominated our system’s overall
performance.

On the PC side, we wrote a software
suite to deliver functionality to each of
the supply chain’s three members as
identified in Figure 1:

The supply-chain-owner manage-
ment application creates encryption
and signature key pairs and signs
UIIs with the private-signing key.
The tag-manufacturer management
application imports lists of signed
UIIs and burns them into blank tags.
The POS application is simple to use
and implements the WIPR protocol
at the point of sale.

The information exchanged among the
three programs is limited, exemplifying
the limited trust the system requires.
The tag-manufacturer application
 receives only the public-encryption
key kE and a list of signed IDs, while
the POS application receives the pri-
vate decryption key kD and the public-
verification key kV.

To use our system, the supply-chain
owner first generates the encryption
and signature key pairs, then imports
a database of items with unsigned UIIs
(provided in the real world from a
 logistics software) and signs them using
the private-signing key kS. Finally, the
 supply-chain owner creates two files:
one containing kE and a list of signed
UIIs (to be sent to the tag manufac-
turer), and the other containing kD and
kV (to be sent to the POS terminal).

The tag manufacturer loads the file
from the supply-chain owner, then con-
nects a sequence of blank tags to the

tag manufacturer’s workstation. Each
tag is programmed with the public-
encryption key kE and a single signed
UII. Other than by performing the
WIPR protocol, there is no command
that extracts this signed payload from
the tag unless it is reverse engineered.

We designed the POS application to
be as similar as possible to conventional
POS terminal software. It features a sim-
ple GUI that’s usable on a touchscreen.
The software continuously scans for
RFID tags in its vicinity. When it finds
a tag, it displays the tagged item’s pic-
ture and lists its price. If the tag is identi-
fied as a WIPR tag, the software carries
out the WIPR protocol and optionally
sounds an alarm if the authentication
process fails.

A video demonstration of our POS
system, including key creation and
distribution and POS operation, is
available online at http://youtu.be/
ZFrT1xRTorE. As the video shows, the
system works well in a mixed-tag en-
vironment. From the user’s viewpoint,
WIPR and non-WIPR tags exhibit the
same behavior, other than a slight delay
due to the WIPR protocol processing.

Performance Evaluation
In earlier work,4 we showed that an
ASIC implementation of WIPR has an
acceptable gate count (approximately
4,700 GEs) and power consumption
(mean current draw of 14 μA). For
comparison, Martin Feldhofer and
his colleagues described an Advanced
 Encryption Standard symmetric key
 cipher implementation with a gate
count of 3,400 GEs and a mean cur-
rent draw of 3 μA.10

To learn whether the cryptographic
operation is indeed an inherent bot-
tleneck or whether it can be sped up
enough to make the system usable, we
considered the Demotag’s general-pur-
pose 8-bit microcontroller to be inher-
ently slower than a custom ASIC im-
plementation. Indeed, a naive software
WIPR protocol implementation that
was functionally identical to the ASIC’s
implementation took an unacceptable

Figure 4. System implementation setup. It consists of standard off-the-shelf EPC-
compliant RFID tags, a standard off-the-shelf RFID reader, and WIPR-compatible PC
software elements to support the supply-chain owner, tag-manufacturer, and POS
applications.

Standard EPC tag

IAIK UHF demotag
CAEN RFID reader

Serial link

EPC C1G2 air interface

Serial link

Tag-manufacturer application

File
transfer

Supply-chain owner application

File
transfer

Point-of-sale application

PC-13-02-oren.indd 58 03/04/14 3:19 PM

APRIL–JUNE 2014 PERVASIVE computing 59

7 seconds to perform encryption. How-
ever, as we’ve shown elsewhere in more
detail,11 we were able to speed up the
software implementation by two orders
of magnitude.

We accelerated WIPR by caching two
encryption components: the random
padding r (1,104 bits) and the pay-
load m (496 bits). We evaluated three
 possible scenarios:

the naive implementation, which
doesn’t cache the random padding
of m and the long random number
r, but instead recalculates them on
demand;
caching m in SRAM; and
caching the values of both m and r.

We discovered that caching data in
SRAM has a dramatic effect on the exe-
cution time. The first scenario required
7 seconds to encrypt; the second sce-
nario took 1.18 seconds; and the third
scenario took just 180 ms.

Other than encryption itself, we
found another serious bottleneck in
communication, with the dominant
parameter being the number of round-
trips made by the reader. The particu-
lar reader we used didn’t recognize the
concept of sessions and repeated the
RFID singulation process with the tag
every time it sent a command. This be-
havior significantly slowed down the
protocol, so sending the 80-bit chal-
lenge took 200 ms and reading back
the encrypted response took 460 ms.
However, we can reduce both of these
times significantly.

First, we could improve the time im-
mediately with better use of the air
 interface. By sending the challenge in a
single 80-bit packet and keeping the tag
in the SECURED state, Tchallenge can
decrease from 200 ms to an estimated
85 ms. Next, keeping the tag powered
in the SECURED state throughout the
response phase would remove the un-
necessary singulation steps and save
even more time. Finally, it’s possible to
pipeline the encryption and response
transmission. Using WIPR, the tag can

compute the ciphertext in small blocks
and send them to the reader as soon as
they’re ready. The total time to perform
the entire protocol in this case is equiv-
alent to the time required to power on
the tag and send it a challenge (85 ms),
the time required for the tag to calcu-
late the full response (180 ms), and the
time required to send the final chunk,
which is ready only after encryption
is finished (60 ms). Under these minor
modifications, we estimate the entire
protocol (including both identification
and authentication) will take 325 ms.

For a more dramatic optimization,
the entire 276-byte response can be
read by a single read command, to be
issued immediately after the challenge
is sent. This is possible because the tag
can be designed to concurrently back-
scatter the ciphertext’s initial bytes
while it calculates the following ones.
Because the data link takes only 112 ms
to transfer 2,208 bits, the entire pro-
tocol time is dominated in this case by
Tencrypt, leading to a total estimated
time of 265 ms for the entire protocol.
For comparison, the execution time of
a standard query-response is approxi-
mately 40 ms.

W IPR-enabled tags show
a practical design for
a secure RFID supply-
chain system that uses

public-key cryptography. They are fully
compatible with the existing ecosystem
of nonsecure tags, readers, and termi-
nals. Their use of public-key cryptog-
raphy reduces trust issues between the
supply-chain owner and tag manufac-
turer, ensures that reverse- engineered
tags do not compromise the whole
system’s security, and protects user pri-
vacy. We conclude that the public-key
approach is a viable design alternative
for supply-chain RFID EPC tags.

ACKNOWLEDGMENTS
Yossef Oren was the corresponding author for
this article. Shay Cohen, Amit Erez, and Doron

Shutzberg wrote the point-of-sale software
implementation.

REFERENCES
 1. M. Aigner, T. Plos, and A.R.S. Coluccini,

Secure Semi-Passive RFID Tags—Pro-
totype and Analysis, tech. report, Bridge
Project, Nov. 2008; www.bridge-project.
eu/data/File/BRIDGE_WP04_Secure_
semi-passive_RFID_Tags.pdf.

 2. A. Arbit, Y. Oren, and A. Wool, “Toward
Practical Public Key Anti-counterfeiting
for Low-Cost EPC Tags,” Proc. 2011
Int’l IEEE Conf. RFID (RFID 11), 2011,
pp. 184–191.

 3. D.V. Bailey and A. Juels, “Shoehorning
Security into the EPC Tag Standard,”
Proc. 5th Int’l Conf. Security and Cryp-
tography for Networks (SCN 06), LNCS
4116, 2006, pp. 303–320.

 4. M. Feldhofer, S. Dominikus, and J.
Wolkerstorfer, “Strong Authentication
for RFID Systems Using the AES Algo-
rithm,” Proc. 6th Int’l Conf. Crypto-
graphic Hardware and Embedded Sys-
tems (CHES 04), LNCS 3156, Springer,
2004, pp. 357–370.

 5. G. Gaubatz et al., “State of the Art in
Ultra-Low Power Public Key Cryptogra-
phy for Wireless Sensor Networks,” Proc.
3rd IEEE Int’l Conf. Pervasive Comput-
ing and Communications Workshops,
2005, pp. 146–150.

 6. H. Holtzman, S. Lee, and D. Shen, “Open-
tag: Privacy Protection for RFID,” IEEE
Pervasive Computing, vol. 8, no. 2, 2009,
pp. 71–77.

 7. ISO/IEC 18000-6 Information Technol-
ogy—Radio Frequency Identification for
Item Management—Part 6: Parameters
for Air Interface Communications at 860
MHz to 960 MHz, ISO/IEC, 2011.

 8. A. Juels and S. Weis, “Authenticating Per-
vasive Devices with Human Protocols,”
Proc. Advances in Cryptology (Crypto
2005), LNCS 3621, 2005, pp. 293–308.

 9. D. Naccache, Method, Sender Appara-
tus and Receiver Apparatus for Modulo
Operation, European Patent Application
91402958.2, filed 27 Oct. 1992.

 10. Y. Oren and M. Feldhofer, “WIPR—
Public-Key Identification on Two Grains
of Sand,” Proc. Workshop on RFID Secu-
rity 2008, 2008, pp. 15–27.

 11. Y. Oren and M. Feldhofer, “A Low-
Resource Public-Key Identification
Scheme for RFID Tags and Sensor
Nodes,” Proc. 2nd Int’l Conf. Wireless

PC-13-02-oren.indd 59 03/04/14 3:19 PM

60 PERVASIVE computing www.computer.org/pervasive

FEATURE: RFID

Network Security (WiSec 09), ACM,
2009, pp. 59–68.

 12. P. Rotter, “A Framework for Assessing
RFID System Security and Privacy Risks,”
IEEE Pervasive Computing, vol. 7, no. 2,
2008, pp. 70–77.

 13. A. Shamir, “Memory Efficient Variants
of Public-Key Schemes for Smart Card
Applications,” Proc. Advances in Cryp-
tology (EuroCrypt 94), LNCS 950, 1995,
p. 445.

 14. S.A. Weis et al., “Security and Privacy
Aspects of Low-Cost Radio Frequency
Identification Systems,” Security in Perva-
sive Computing (SPC 2003), LNCS 2802,
2003, pp. 201–212.

 15. J. Wu and D.R. Stinson, “How to Improve
Security and Reduce Hardware Demands
of the WIPR RFID Protocol,” Proc. 2009
IEEE Int’l Conf. RFID (RFID 09), 2009,
pp. 192–199.

the AUTHORS
Alex Arbit is a Hardware & Electronics Engineer at Tel Aviv University. His
research interests include real-world cryptography and low-resource crypto-
graphic constructions for lightweight computers. Arbit has an MSc in electrical
engineering from Tel Aviv University. Contact him at alexand5@eng.tau.ac.il.

Yossef Oren is a post-doctoral research scholar in the Department of
 Computer Science at Columbia University. His research interests include
power analysis attacks and countermeasures, low-resource cryptographic
 constructions for lightweight computers, and real-world cryptography. Oren
has a PhD in electrical engineering from Tel Aviv University. Contact him at
yos@cs.columbia.edu.

Avishai Wool is cofounder of the AlgoSec Systems (formerly Lumeta) network
security company and is an associate professor at Tel Aviv University’s School
of Electrical Engineering. His research interests include firewall technology,
computer, network, and wireless security, smart-card and RFID systems, and
side-channel cryptanalysis. Wool has a PhD in computer science from the
 Weizmann Institute of Science, Israel. He is the creator of the AlgoSec Firewall
Analyzer, a senior member of IEEE, and a member of the ACM and Usenix.
 Contact him at yash@eng.tau.ac.il. Selected CS articles and columns

are also available for free at
http://ComputingNow.computer.org.

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139 | Fax: +1 714 821 4010

Sandy Brown: Sr. Business Development Mgr.
Email sbrown@computer.org
Phone: +1 714 816 2144 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Far East:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742
Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East:
Ann & David Schissler
Email: a.schissler@computer.org, d.schissler@computer.org
Phone: +1 508 394 4026
Fax: +1 508 394 1707

Southwest, California:
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast:
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304 4123
Fax: +1 973 585 7071

$GYHUWLVLQJ�6DOHV�5HSUHVHQWDWLYHV��&ODVVLÀHG�/LQH�

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304 4123
Fax: +1 973 585 7071

Advertising Sales Representatives (Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304 4123
Fax: +1 973 585 7071

ADVERTISER INFORMATION

PC-13-02-oren.indd 60 03/04/14 3:19 PM

