
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

1

Reverse Engineering IoT Devices: Effective
Techniques and Methods

Omer Shwartz, Student Member, IEEE; Yael Mathov; Michael Bohadana; Yossi Oren, Senior Member, IEEE; and
Yuval Elovici

Abstract—Recent IoT botnet attacks have called the attention
to the fact that there are many vulnerable IoT devices connected
to the Internet today. Some of these Web-connected devices lack
even basic security practices such as strong password authenti-
cation. As a consequence, many IoT devices are already infected
with malware and many more are vulnerable to exploitation.

In this paper we analyze the security level of 16 popular IoT
devices. We evaluate several low-cost black-box techniques for
reverse engineering these devices, including software and fault
injection based techniques used to bypass password protection.
We use these techniques to recover device firmware and pass-
words. We also discover several common design flaws which
lead to previously unknown vulnerabilities. We demonstrate the
effectiveness of our approach by modifying a laboratory version
of the Mirai botnet to automatically add these devices to a
botnet. We also discuss how to improve the security of IoT
devices without significantly increasing their cost or affecting
their usability.

Index Terms—Computer security, Internet of Things (IoT), IoT
application design, IoT standardization, IoT system architecture,
IoT test-bed, Privacy, Reverse engineering.

I. INTRODUCTION

I N the past years we have been witnessing a dramatic rise
in the number of Internet connected devices and recently,

wireless connected devices. This is especially the case in the
Internet of Things (IoT), which can be defined as a network
of smart electronic devices with Internet connectivity. The
number of IoT devices is constantly rising and estimated to
reach 50 billion by 2020 [1].

Since the early days of computing, low-cost ubiquitous
devices have largely been powered by simple microcontrollers
and ran a very limited software stack, ranging from a fixed-
function program running in a busy loop to a limited func-
tionality real-time operating system (RTOS). As technology
matured, it became more cost-effective to design these devices
around a fully-featured operating system such as Linux, taking
advantage of the existing code base and relative ease of
development and debugging.

The task of the device security engineer has also evolved
with the move from ASICs and simple microcontrollers to
complete Linux devices. Traditional hardware attack methods
which target ICs are less effective today, since the hardware

Manuscript received February 2, 2018; date of current version October 8,
2018; This work was supported by the supported by Israel Science Foundation
under grants 702/16 and 703/16.
O. Shwartz, Y. Mathov, M. Bohadana, Y. Oren and Y. Elovici are with
the Department of Software Information Systems Engineering, Ben-Gurion
University of the Negev, P.O.B. 653, Beer-Sheva, 8410501 Israel (e-mail:
omershv@post.bgu.ac.il; yaelmath@post.bgu.ac.il; bohadana@post.bgu.ac.il;
yos@bgu.ac.il; elovici@bgu.ac.il).

can be assumed to be generic and even shared between dif-
ferent vendors. Ubiquitous network connectivity also changes
the attack model, making it interesting to examine the vul-
nerability of devices to remote attacks, or the ability of an
attacker to translate a single instance of physical access to
widespread damage to many devices. Indeed, the introduction
of these small, embedded devices into the Web and residences
and businesses was quickly followed by emerging security
challenges [2]. The rapid growth in the number and variety
of IoT devices created a scenario where millions of devices
[3] are deployed yet consumers may know very little about
the capabilities and security of the devices. This knowledge is
especially crucial since IoT devices are often equipped with a
wide array of sensors, connected to private networks and con-
trol a variety of physical systems, from entry gates and door
locks to HVAC (Heating, Ventilation and Air Conditioning)
systems [4].

In this work we present a general methodology for “black-
box” reverse engineering of complete stack IoT devices. The
techniques presented address many use cases and can be used
as a tutorial for gaining internal access to new devices. While
most of the techniques we use are generally well known, to the
best of our knowledge, this is the first time they are applied
systematically to many different IoT devices. This allows us
to make quantitative arguments about the state of IoT security
today and make recommendations for more secure IoT design
and implementation.

A. Contributions

Our paper makes the following contributions:

• We present a systematic reverse engineering workflow
appropriate for full-stack OS (operating system) IoT
devices in a detailed and tutorial-like manner.

• We apply this workflow to sixteen IoT devices produced
by different manufacturers.

• We provide insight into the obstacles encountered and
methods proven effective while evaluating the devices-
under-test and discuss their common characteristics and
security flaws.

• We analyze some of the properties and vulnerabilities dis-
covered to implement new attacks and suggest theoretical
exploits.

• We suggest some non-malicious uses for the reverse
engineering process that may benefit consumers.

• We offer a list of recommendations for those interested
in making these devices more secure.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

Figure 1: Block diagram describing the structure of a typical IoT device

B. Related Work

Mahmoud et al. [5] presented a survey of the current
concerns in IoT security. The authors described the general
architecture of IoT devices and the security challenges stem-
ming from this design, corresponding to the security principles
of confidentiality, integrity, availability and authentication.
Sicari et al. [6] claimed that the network communication
characteristics of IoT devices, combined with the increase in
exchanged information, multiply the potential for attacks that
breach system privacy. Alqassem et al. [7], Zhang et al. [8]
and Yang et al. [9] also raised similar concerns. Interestingly,
most of this analysis centers on security threats to the user
of the IoT device (i.e. loss of confidentiality and availability)
and less on the risks to the device itself (e.g. counterfeiting).

Lin et al. [10] presented a broad and highly specific col-
lection of definitions regarding IoT types and taxonomies. In
addition to providing a long list of communication methods
and standards they also described six security features of IoT
devices and eighteen different attacks which were categorized
into three classes.

Patton et al. [11] studied the extent of vulnerabilities found
in network-accessible IoT devices. They reviewed several
network scanners and focused on Shodan [12], a network
scanning project that yielded a publicly available search engine
for Internet connected services. Using Shodan, the authors
discovered many vulnerable IoT systems including a large
number of SCADA (supervisory control and data acquisition)
systems. Similar techniques can also be found in the work of

Bodenheim et al. [13].
Tellez et al. [14] focused on WSN (wireless sensor net-

works) and elements of their security. In this research, the
authors investigated the MSP430 MCU. The BSL (bootstrap
loader) password that protects the MCU from unauthorized
access was presented as a main security feature of the MSP430
MCU. A flaw detected in the BSL password mechanism
through reverse engineering techniques allowed the researches
to easily break into a secured MCU. The authors also sug-
gested ways to design a secure-BSL that can improve the
protection of MCUs.

Gubbi et al. [15] offered an comprehensive review of the
WSN terrain including the terminology associated with it.
Halderman et al. [16] showed techniques for recovering secrets
from DRAM (dynamic random access memory) modules by
transferring the modules into a new machine while minimizing
data decays. Several improvements that allow a memory mod-
ule to remain unpowered for several minutes without losing
most of the data and various effects that can be achieved
by recovering secrets belonging to different algorithms or
applications were also demonstrated in the paper.

Lanet et al. [17] showcased methods for reverse engineering
Java memory cards’ EEPROM (erasable programmable read-
only memory) data. They described forensic methods which
enable researchers to locate critical data within the memory
image, account for errors and eventually rebuild the original
applet code that is stored in the card.

Obermaier et al. [18] employed reverse engineering tech-

2

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

Figure 2: The building blocks of black-box reverse engineering

niques on several wireless security cameras and showed how
the cameras are vulnerable to remote attackers without phys-
ical access to the surroundings of the device. The authors
presented various encryption and communication weaknesses
that may allow an attacker to impersonate a camera and
eavesdrop or sabotage its communication.

C. Embedded Device Software Architectures

Software architecture (which may include an OS) deter-
mines many of the properties and limitations of a device. We
differentiate between three main types of software architec-
tures that are present in embedded devices.

• Full stack OS based devices - devices that contain a
modern operating system, such as Linux, that sepa-
rates execution into kernel mode and user mode. While
traditionally this architecture was preferred only when
versatility and high performance was needed [19], more
and more low-cost devices are now based on Linux due
to falling component costs and the ease of developing for
this operating system. In particular, many of the cameras
we surveyed had a full stack Linux implementation.

• Partial stack OS based devices - devices with a specifi-
cally designed RTOS (real-time operating system) such as
VxWorks or vendor-provided OS implementation. These
devices are generally specially crafted for their task [20],
and tend to omit some of the features of full stack OSs.
Some lower-end or single tasked IoT devices use this
architecture, with the RTOS handling Wi-Fi and Web
protocols, and additional vendor code responsible for
gathering sensor data.

• Devices with no operating system - embedded devices
which directly execute compiled instructions, without
any OS support for functionalities such as threading
or interrupts. Devices with no OS can offer better raw
performance and higher run-time predictability than other
architecture, but tend to be more difficult to development,
and therefore have a longer time-to-market (TTM).

Thus far, all of the IoT attacks seen in the wild and known
to the authors, have targeted full stack OS devices, as these
are more generic and make use of various drivers and open
source components that may have known vulnerabilities. For
this reason, full stack OS devices were chosen as the target
for reverse engineering in this paper, although we believe that
partial stack OS devices have significant potential for security
vulnerabilities as well.

II. REVERSE ENGINEERING METHODOLOGY

The following is a description of the series of actions
performed in order to gain access to IoT device software, run
foreign applications on the device and extract secrets such

Table I: A list of hardware and software tools used

1 Screwdrivers and plastic spudgers including common and
uncommon drive bits such as Philips, Torx, Security Torx and
various star configurations.

2 BK 2712 multimeter.
3 FTDI FT232R USB UART interface module.
4 Saleae Logic Pro 8 logic analyzer with Logic 1.2.12 software.
5 CH341A USB EEPROM and Flash memory programmer module

with software version 1.29.
6 Intel i7-4790 desktop PC running the Windows 10 operating

system and the Ubuntu 16.04.4 operating system on a virtual
machine.

7 Intel i7-6900K server with four Titan X (Pascal) Nvidia GPUs
running the Ubuntu 16.04.2 LTS operating system with Nvidia
driver version 375.66.

8 John The Ripper 1.8.0 CPU password cracking software.
9 Hashcat 3.6.0 multiple architecture password recovery software.
10 binwalk firmware analysis tool - latest version pulled from

GitHub repository on 30/07/2017 and compiled locally, including
all dependencies.

11 firmware-mod-kit - the latest version pulled from GitHub
repository on 30/07/2017 and compiled locally

(a) F59L1G81A 1GB NAND
Flash module inside Xtreamer
Cloud Camera

(b) W25Q128FVSG 16MB SPI
Flash module inside Ennio SYWi-
Fi002 Wireless Doorbell

Figure 3: Examples of onboard memory

as credentials used to access the device. This section focuses
on reverse engineering “black-box” devices, for which no
previous knowledge about the device is required. The tools
used for assessing these techniques can be seen in Table I.

Our black-box reverse engineering process follows a stan-
dard workflow that can be seen in Figure 2:

1) Physical inspection of the device.
2) Extraction of the device firmware image and file system:

a) Bypass boot-time security and recover the firmware
image.

b) Recover the data with out-of-band means.
3) Analysis the firmware image and recovery of the secrets

inside it.

A. Inspection of the Device

Electronic devices are usually held together by screws or
plastic clips. Most of the devices can be opened without
damaging the exterior of the device or the internal components.
Some device manufacturers also use glue during assembly,
thus making opening the device more difficult.

1) Locating and identifying memory components: Smart
devices that run the Linux operating system require sufficient
non-volatile memory to store the kernel and other mandatory
file system components. A cheap and efficient way for engi-
neering such devices is to place the memory module outside
of the main processor package. Devices engineered in such
configurations usually employ a processor that is capable of

3

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

loading and running instructions directly from the SPI (serial
parallel interface) Flash memory or EEPROM devices.

Understanding the memory technology is crucial for per-
forming firmware extraction when there is no possibility of
running commands on the tested device (see additional details
in Subsection II-B).

A memory module that uses technology consistent with the
required capacity is often found in devices. Common examples
are: 25XX \ 26XX series eight-pin SPI Flash memory with
up to 32MB of storage space; larger SPI Flash devices with
sixteen or thirty-two pins; NAND Flash devices that come in
various capacities and shapes and are usually coupled with
a 24XX EEPROM module for holding initial configuration;
eMMC (embedded multimedia controller) modules or cards
usually containing more than a gigabyte of data. Examples of
memory modules can be seen in Figure 3.

Identification of the memory module can be performed
by searching the engraved device codes on the IC (inte-
grated circuit) package. In most cases the modules used are
commonly known and available off-the-shelf with publicly
available datasheets.

2) Locating UART terminals: UART (universal asyn-
chronous receiver/transmitter) ports are embedded universal
communication channels with many purposes. Within smart
devices, UART ports are commonly used for development and
maintenance via a Linux console that the port is bound to.
UART ports communication is based on a standard protocol
at a predetermined baud rate. Typical baud rates for UART
communication with embedded devices are 9600, 57000, and
115200 bits-per-second.

In many cases, UART terminals are embedded into the
PCB (printed circuit board) in the prototyping stages of a
product’s life and are kept in the design during production
either to reduce costs of redesign or maintain access for
future maintenance. In certain cases, UART terminals are
placed in visible and accessible locations, occasionally marked
with their purpose. In other cases the terminals are hidden
(intentionally or unintentionally) between other test points
exposed on the boards for post-production testing. Connecting
to UART terminals allows easy access for communication with
the OS and may also form a beachhead for the benefit of
reverse engineering.

Basic UART communication requires only three electrical
lines: TX (transmit), RX (receive) and GND (ground). A
typical UART terminal has two to four exposed copper pads
aligned in a row; when there are two pads, the TX pad is
pulled electrically towards +1.8v, +3.3v or +5v and the RX
pad might not be pulled to either directions; when there are
three pads, the additional pad is usually the GND pad which
should have continuity to the ground plane of the PCB; when
there are four pads, the last pad is generally a VCC (positive
voltage supply) which shows up as +1.8v, +3.3v or +5v when
powered on.

By using the typical properties and appearances of UART
terminals it is possible to locate suspected terminals using a
multimeter and verify them by attaching a digital analyzer
capable of analyzing UART communication. Figures showing

various placements of UART terminals can be seen in Figure
4.

3) UART discovery assistant module: In order to assist in
the detection of UART terminals on PCBs that contain a large
amount of test points, a small device that generates audible
beeps when probing an active UART TX line was designed.
The device is composed of an ATtiny13A [21] programmable
micro-controller along with auxiliary electronics with custom
code that switches between three popular UART baud rates,
and it beeps when encountering a specified number of English
printable ASCII characters (characters with an ASCII denota-
tion larger than 0x20 and smaller than 0x7F). The device can
be seen in Figure 5. The source code for the module is publicly
available in the authors’ GitHub repository [22].

B. Extraction of Firmware and Data

Retrieval of data from within the device is a key component
of reverse engineering. This section describes practices that
facilitate data access, acquisition and transfer from the device.

1) Handling bootloader and Linux passwords: While boot-
ing, the bootloader loads the kernel and passes the boot
arguments to the kernel. Typically, the path for a user mode
process that starts when the kernel completes booting is within
the boot argument.

After booting, the Linux kernel transfers control of the
console to the user-mode process. Traditionally, after executing
a list of scripts, the init process may transfer control to the
login or shell process. When the login process starts, it requests
and verifies the user’s credentials and spawns a shell process
for the user to control. The login process is protected from
brute force attempts and imposes a delay between consecutive
password guessing attempts.

During reverse engineering, when encountering with a login
request in an embedded device, a simple technique is to replace
the init part of the boot argument with a path to /bin/sh or any
other process that can assist in gaining access to the system.
This change can be done from within the bootloader terminal,
which can be accessed when the boot process begins.

Access to the bootloader is usually accomplished by press-
ing some key during the initial booting stages. In some
cases the bootloader is protected by a password. Since the
bootloader has a very small memory footprint, it usually lacks
the infrastructure for password hashing and only performs
string comparison against a hard-coded password. Such hard-
coded password strings may be recovered from memory blobs
obtained via out-of-band methods.

2) Using physical attacks to bypass passwords or recover
passwords: Fault injections have a significant role in reverse
engineering [23]. The use of fault injections allows the re-
searcher to generate a hardware fault at any given time and
manipulate the underlying software. Countermeasures for fault
injection attacks constantly being investigated [24], but they
are rarely implemented in devices that are not designed to be
tamper-proof. We discovered that hardware faults which cause
the initialization process to fail can cause the system to fall
back into a highly-privileged shell process. This can be done
by disconnecting or shorting various hardware components.

4

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

(a) UART terminals with marking inside Xtreamer
Cloud camera

(b) Wires soldered to a header pads that includes
UART connections inside the Ecobee 3 smart
thermostat

(c) Male pin header soldered on top of UART
socket inside Samsung SNH-1011N smart cam-
era

Figure 4: Examples of UART terminals

Figure 5: UART discovery assistant module

For example, shorting the GND and MISO pins of an SPI Flash
module will cause any reads from the device to be malformed.
Of course, this procedure carries the risk of damaging the
device or its memory.

While side-channel attacks can also be used for recovering
passwords [25], they tend to be better suited to systems
with a simpler design such as ASICs (application-specific
integrated circuit) or FPGAs (field-programmable gate array).
They are more difficult to implement in our black-box scenario
which includes a fully-featured multitasking operating system.
Many other types of physical attacks exist for the determined
researcher, some of which are even effective against tamper
resistant devices [26], but none of the devices we investigated
had properties that required these methods.

3) Uploading additional tools onto the device: Embedded
systems are often designed with the minimal set of features
and components required for their designated task, and their
software design reflects this. Embedded Linux may contain
only a small subset of the Linux utilities and features that desk-
top Linux users are used to having. BusyBox [27] provides
many known Linux utilities in reduced size and precompiled
for many common architectures. Using common utilities such
as FTP (file transfer protocol utility), TFTP (trivial file transfer
protocol utility), Wget, and NetCat can be used to mediate data
and file transfer to and from the device and over the network.

When network utilities are unavailable, data can be infil-
trated through crude methods such as scripting the use of the
Unix bash echo command for writing binary data into files. A
simple Python script that uses echo for transferring files over
UART is publicly available in the authors’ GitHub repository
[22].

4) Obtaining the firmware: Extracting a copy of the
firmware and file system is an important stage of reverse
engineering since analysis of the firmware can reveal secrets
and vulnerabilities. Firmware analysis is further discussed in
Section IV.

When network connection and console access are available,
flash memory MTD (memory technology device) partitions
can be streamed into NetCat and sent to a remote computer.
A copy of the file system may also be compressed using the
tar utility and streamed using NetCat. Doing so will eliminate
the need for unpacking the file system, which is not always a
trivial task.

If a network connection is unavailable, memory contents can
be read over UART from a bootloader or Linux console. Boot-
loaders’ consoles often contain memory read/write/display
primitives and can be used to slowly dump an image of the
memory into the UART console. A script on the receiving
end can convert the hexadecimal-displayed data into binary
format; such script is publicly available in the authors’ GitHub
repository [22].

When the bootloader and Linux console are inaccessible,
flash memory contents can be dumped via out-of-band meth-
ods. There are several ways in which the researcher can gain
access to partial or complete data belonging to the device’s
memory. A minimally intrusive option is to connect a logic
analyzer to the pins of the memory module in order to record
the signals while the device is booting up. Partial memory
images can be extracted from the communications on the
memory bus, depending on the actual addresses that were
accessed during the recording. A simple script can convert
the logic analyzer output to usable binary, and such script is
publicly available in the authors’ GitHub repository [22].

In order to obtain a complete and accurate image of the
device memory, it is possible to desolder the memory chip
and connect it to off-the-shelf memory readers such as the
CH341A. If the memory module is not compatible with off-

5

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

the-shelf readers, a custom reader can be built using a general
purpose USB adapter such as FT2232H or a programmable
micro-controller.

More advanced techniques have been proposed [28] but they
are outside the scope of this paper due to their costs and effort
required.

C. Analyzing the Firmware

1) Unpacking memory images: Once a memory image has
been obtained, it is necessary to unpack it in order to view
the data it holds. The community-maintained binwalk utility
has the ability to unpack and extract most common embedded
file systems, and even some proprietary file systems. When
used with the ‘-Z’ argument, binwalk detects raw compression
streams that may be hidden from default scans and is able to
extract them. Firmware-mod-kit [29], a collection of utilities
contains several file formats and variations that binwalk does
not support.

2) Brute forcing passwords : One of the more interesting
feats of reverse engineering is password extraction. Native
Linux passwords are used by default over SSH (secure shell)
and Telnet (telecommunication network) connections and in
some cases also for other services such as HTTP and FTP.
An known observation about the Mirai IoT malware is that
the infection method was connecting to IoT devices over
SSH/Telnet with default credentials. Many devices today have
credentials that may not be as trivial as ‘root’, ‘admin’ or
‘123456’ but are still not complex enough to withstand an
exhaustive password search.

Linux user passwords are usually stored in the special
file ‘/etc/passwd’ or its companion ‘/etc/shadow’ in a hashed
format, using the crypt(3) [30] utility. The password hash files
can be read freely by users with sufficient credentials and can
also be extracted from the file system residing in the firmware.

This utility supports several hashing algorithms, but there
are two that are most commonly observed in IoT devices:

• Descrypt - A DES (data encryption standard) based
password hashing algorithm that uses a two character salt
with 4096 different combinations. Although passwords
may exceed 8 bytes, only the first 8 bytes are hashed and
tested. A modern high-end GPU (graphical processing
unit) is capable of calculating over 9*10^8 descrypt
hashes per second.

• Md5crypt - An MD5 (message digest algorithm 5) based
password hashing algorithm that supports a salt value
of 12-48 bits allowing up to 248 different combinations.
md5crypt do not impose any length limitation on pass-
words. A modern high-end GPU is capable of calculating
over 10^6 md5crypt hashes per second.

While simple passwords can be recovered using generic pass-
word recovery tools such as John the Ripper [31], advanced
password cracking can be achieved with hashcat [32]. Hashcat
is an advanced password cracking program which supports
advanced rules and patterns and is designed for GPU hashing.
Hashcat use requires more knowledge than using John the
Ripper and it is widely used for the recovery of difficult
passwords.

In order to perform efficient password cracking, a word list
or password generation pattern file is required. Many patterns
and word lists are available online, but none had proved
effective enough against hard-to-guess IoT device passwords.
A few observations by the authors about known and newly
discovered passwords allowed the creation and sorting of a
password pattern list that proved more effective against tested
IoT device passwords. The pattern generation rules employed
consist of: up to two symbol characters; up to two three
uppercase characters; any amount of digits and lowercase
characters; and up to eight characters total.

Another observation we made was that many elements of
password difficulty inversely correlates with their frequency
in password selection. For example: non-alphabetic characters
are difficult to guess but are used less often than other
characters; digits are easy to guess and are widely used; and
uppercase characters are used less than lowercase characters.
This allowed sorting the pattern list according to increasing
guess difficulty levels while expecting to guess passwords in
the early stages of evaluating the list. More on the results of
password cracking in can be found Section III. A Python script
for generating and sorting the pattern list is publicly available
in the authors’ GitHub repository [22].

3) Detecting vulnerabilities within the firmware: As
firmware images contain the operating system and code con-
trolling the device behavior, further analysis may expose
underlying vulnerabilities. While in depth reverse engineering
techniques of the firmware are beyond the scope of this paper,
extensive research has been conducted in this field [18], [33],
[34], [35], [36].

III. RESULTS

A. Devices Under Inspection

Table II describes 16 IoT devices that were subjected to
reverse engineering. As shown in the table, our survey included
devices from many different vendors and with prices which
varied by an order of magnitude. Most of the devices with the
properties selected for this work contain cameras. In addition,
there are two smart doorbells that are capable of streaming
video, audio, initiating VOIP sessions as well as opening an
entry door or a gate. A smart thermostat was also analyzed.
This device can control an entire household’s HVAC systems.
A list of all of the devices and their properties can be seen in
Table II. All of them contained the embedded Linux operating
system.

Figure 6 shows an example of how an investigator may
easily attach probes to a target device without the need of
soldering. Temporary probe connections, such as the ones
used during the evaluations in this paper, leave no evidence of
tempering with the device other than opening it.

B. Techniques Applied on Devices

During the evaluation of the techniques presented in Section
II, various approaches were used on the devices under test.
Table III presents a sample of the devices inspected along
with the properties that allow or hinder reverse engineering.

6

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

(a) Two micro grabbing probes connected to the Samsung SNH-1011N
smart camera UART terminal while a third probe is connected to the chassis
of the USB port for grounding

(b) Three probes connected to the Xtreamer Cloud Camera UART
terminals, the probes are being held in place by friction

Figure 6: Temprorary probe connections to UART terminals of inspected IoT devices, temporary connections are useful for
making quick evaluations of devices

Table II: List of devices reverse engineered

Device ID Device Type Manufacturer Model Video Recording Additional
Capabilities

Price (USD)

1 IP Camera Xtreamer Cloud Camera Yes None 84
2 IP Camera Simple Home XCS7_1001 Yes None 54
3 IP Camera Simple Home XCS7_1002 Yes None 47
4 IP Camera Simple Home XCS7_1003 Yes None 142
5 IP Camera Foscam FI9816P Yes None 70
6 IP Camera Foscam C1 Yes None 58
7 IP Camera Samsung SNH-1011N Yes None 68
8 IP Camera Xiaomi YI Dome Yes None 40
9 IP Camera Provision PT-838 Yes None 163
10 IP Camera Provision PT-737E Yes None 102
11 IP Camera TP-Link NC250 Yes None 70
12 Baby Monitor Phillips B120N Yes None 46
13 Baby Monitor Motorola FOCUS86T Yes None 145
14 Doorbell Danmini Wi-Fi Doorbell Yes Open door/gate 80
15 Doorbell Ennio SYWi-Fi002 Yes Open door/gate 119
16 Thermostat Ecobee 3 (golden firmware) No HVAC control 170

Table III: Inspected devices and the techniques effective on them

Device ID UART location* Bootloader
password

Terminal
password

Terminal password bypass
technique

Data extraction technique

2 Marked pads No Yes Shorted memory caused
fall back

Used Wget to download
NetCat

5 Unmarked pads* No No - Physically read the onboard
flash

8 Unmarked pads* No No - Used echo to transfer
NetCat over UART

10 Unmarked pads* Yes** Yes Set bootcmd in bootloader Used NetCat
11 Unmarked pads* No Yes Trivial password Used Wget to download

NetCat
12 Marked pads No Yes Set bootcmd in bootloader Used NetCat
15 Unmarked pads* No Yes Trivial password Used TFTP to download

NetCat
16 Unmarked pads* No No - Used NetCat

* Unmarked pads were discovered by inspecting the PCB (with assistance from the UART discovery assistant module described in subsection II-A3.
** Bootloader password was recovered using a logic analyzer to sniff communication on the memory bus.

7

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

The table also mentions the techniques that were shown to be
effective against these devices.

We describe some of the obstacles encountered and how
they were overcome below.

1) Device 2 - Bootloader in read-only mode: The boot-
loader on device 2 did not allow keyboard input, leading
to difficulty bypassing the Linux password. The approach
selected in this case was to cause a physical fault during the
boot process and observe the results.

A paperclip was used to bridge the memory MISO (Master
In Slave Out) pin and the ground pin, causing any read from
the memory chip to fail. After several attempts, the boot
process fell back into a shell process allowing filesystem
manipulation.

2) Device 5 - Bootloader was password protected: De-
vice 5 contained a password-protected bootloader, and two
approaches were successfully used to retrieve the password.
The first approach included reading the memory chip using
a CH341A USB adapter connected to an SOIC-8 clip for
easy attachment to the chip; the dumped memory was later
analyzed, and the password was found within. The second
approach utilized the Saleae Logic Pro 8 logic analyzer which
was attached to the memory chip; by analyzing the outgoing
signals we were able to obtain a more narrow memory image
including only the bootloader code where the password was
easily found.

3) Device 8 - No network tools were available on the
device: While analyzing device 8, no network tools could
be found to facilitate the transfer of files to and from the
device. In order to facilitate the transfer of the NetCat tool
executable, the echo technique was used in which raw binary
data is translated to ‘echo’ commands that are automatically
sent over the UART interface using a Python script.

4) Device 16 - UART interface pads were not easily iden-
tified: A plethora of test pads made the task of locating
UART terminals a difficult task when inspecting device 16.
Using the UART discovery assistant module described in
Subsection II-A3, the detection of the UART terminals became
an effortless endeavor. The UART terminal location can be
seen in Figure 4b.

C. Discoveries Made During the Evaluation

1) Login credentials: One of the most significant steps of
reverse engineering an IoT device is to identify all of the user
accounts within the device. Every device contains at least
one effective account which is the root account. The root
account is the most privileged account on a Unix system. The
root account has the ability to carry out all facets of system
administration, including adding accounts, changing user pass-
words, accessing the file system, and installing software. Once
a hashed password is recovered and its underlying plaintext
password revealed, the ability of logging onto the device with
root user privileges is obtained. As can be seen in Table IV,
eight of the devices contained passwords hashed with the
descrypt algorithm, whereas the other eight devices employed
md5crypt. The correct selection of the hashing algorithm is
critical for resisting password cracking, for example, descrypt

hashing can be as much as ninety times faster than md5crypt,
as described in Subsection II-C.

The pattern based password recovery described in Sub-
section II-C was used against all of the extracted password
hashes. Figure 7 shows the theoretical duration of password
recovery using the proposed 48,820 patterns that cover all of
the password possibilities previously mentioned. The patterns
were sorted in order of increasing complexity. For example,
the pattern for six consecutive digits contains 1,000,000 pos-
sibilities and was sorted before the pattern for five consecu-
tive English characters that has 11,881,376 possibilities. As
the figure shows, most observed non-empty passwords were
recovered within the first 5,000 patterns, after testing only
5.22e+11 passwords. The theoretical bound for testing that
many passwords on a strong GPU server is 2.4 minutes for
descrypt hashes and 217 minutes for md5crypt. Actual pass-
word recovery can impose significant overhead on theoretical
bounds.

Eleven non-empty passwords were recovered, and one de-
vice contained an empty password. Four passwords still had
not yet been recovered and are expected to be revealed within
several weeks. Table IV shows the password complexities
which varied between very low complexity (e.g. ‘abcd’) to
medium complexity (e.g. ‘AbC123de’); undiscovered pass-
words were given the complexity rating ‘Unknown’. All the
passwords discovered swere verified as the credentials in
multiple devices of the same model. Two devices made by
the same manufacturer were discovered to have the same
passwords but different hash values due to random salt.

2) Remote access: A simple port scan using Nmap [37]
revealed that many of the tested devices have administration
services bound to open ports such as SSH or Telnet, which
allows remote access. Remote access allows a user to log-in to
a device as an authorized user without being in the proximity
of the device, depending on the network topology. Six of the
devices maintain a Telnet service, one device has an accessible
SSH port and two devices allow communication to open FTP
ports as can be seen in Table IV.Although some of the devices
do not allow communication through an administration port,
by accessing the UART console it is possible to set up network
services performing the desired functions.

3) Wi-Fi credentials: IoT devices must be connected to the
Internet in order to function properly. In order to maintain
wireless connection persistency after reboots and power short-
ages, a configuration file that holds the Wi-Fi credentials is
typically stored by Linux and was located in all of the tested
devices. The configuration file is located in the mounted file
system, usually under the ‘config’ or ‘NetworkManager’ paths,
and contains all of the Wi-Fi settings, including the SSID
(service set sdentifier) and non-encrypted passwords. Retrieval
of the correct file from an extracted file system can be done
simply by searching the filesystem for relevant keywords.

4) Embedded private keys: A private key is an object that is
used by an encryption algorithm for encrypting and decrypting
messages and plays an important role in asymmetric cryptogra-
phy. The usage of a public/private key communication scheme
relies on the private key being secret and proper practice

8

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

Table IV: Discovered device properties

Device ID Similar Products Password Hash
Type

Open Services for
Remote Access

Password
Complexity

Contains
Private Keys

1 Closeli Simplicam descrypt None found Medium Yes
2 None found md5crypt Telnet Very Low None found
3 None found descrypt Telnet Low None found
4 TENVIS TH692 md5crypt Telnet Low None found
5 None found md5crypt FTP Unknown Yes
6 None found md5crypt FTP Unknown None found
7 None found md5crypt None found Unknown None found
8 None found md5crypt None found None None found
9 VStarcam D38 descrypt None found Low None found
10 VStarcam C23S descrypt Telnet Low None found
11 None found md5crypt None found Very Low None found
12 None found descrypt SSH Medium Yes
13 None found md5crypt None found Unknown None found
14 None found descrypt Telnet Very Low None found
15 None found descrypt Telnet Very Low None found
16 None found descrypt None found Low None found

Figure 7: Time required for password recovery using the GPU server described in Table I. Each marking on the graph represents
a successfully recovered password of an inspected device.

dictates that the server’s private key should only be present
on the server.

In three of the devices a hard-coded private key used for
secure communication was found, as shown in Table IV. With
the private key exposed, secure communication is rendered
insecure and exposed to violations such as man-in-the-middle
and communication sniffing attacks.

5) Rebranded devices: Rebranding is the creation of a
new look and feel for an established product or company.
In the IoT market, a rebranded device is one where the
internal design, architecture and file system are purchased from
one manufacturer, and cosmetic modifications are applied the
device giving it a new brand and manufacturer. Identifying
rebranded devices means that previously discovered private
keys, hashed passwords, account credentials and even the
application vulnerabilities may be identical across several
devices. Four of the inspected devices were found to share
a non-trivial password or hashed password with products
from different manufacturers, strongly implying a similarity

between them. The devices were found using a simple Web
search for the passwords and hashes that resulted in a number
of forum posts that specify hashes and passwords of other
devices.

IV. ANALYSIS

The techniques presented in Section II may be used for
both malicious and beneficial activities. In this section we
demonstrate and discuss some of the possibilities that emerge
from making the reverse engineering process more generic and
streamlined, while considering the results seen in the previous
section.

A. Extension of Existing Attacks into New Platforms

1) Creation of a personalized Mirai botnet with increased
capabilities: The relative ease of compromising modern IoT
devices combined with limited knowledge on the part of
consumers regarding the security of their devices has created

9

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

fertile ground for malicious exploitation of such devices.
Numerous DDoS (distributed denial-of-service) attacks have
been traced and were shown to originate from networks of
infected IoT devices commonly referred to as botnets.

The infamous Mirai botnet gained publicity after it was
used against several online websites. After witnessing a large-
scale DDoS attack on KrebsOnSecurity.com, Martin McKeay,
Akamai’s senior security advocate was quoted as saying,
“Someone has a botnet with capabilities we haven’t seen
before. We looked at the traffic coming from the attacking
systems, and they weren’t just from one region of the world or
from a small subset of networks, they were everywhere.” [38].
Mirai malware infects IoT devices with an open Telnet port
and default login credentials and adds them to the attacker’s
botnet army. The source code for Mirai was leaked later on to
the Internet on and can be modified and used by anyone who
desires [39].

By using the reverse engineering process we were able
to extract new and previously unknown Telnet and SSH
credentials belonging to several IoT devices that were never a
part of the Mirai botnet. In order to create a customized version
of the Mirai botnet, the source code was modified by adding
the new passwords to it. After building an isolated network and
infecting it with the modified Mirai botnet, the bot activity over
the network was monitored and the infection could be seen
spreading to the IoT devices that were subsequently added to
the network.

In our work we observed an interesting case involving
ProVision security cameras; after extracting the login creden-
tials of the ProVision PT-838 security camera, the modified
botnet was able to successfully connect to the ProVision PT-
737E security camera due to the credentials shared between
the cameras of the same manufacturer. The aforementioned
process allows the number of devices that are vulnerable to
Mirai and similar botnets to increase. Considering that both
cameras have been found to be rebranded (as seen in Tab.
IV), other camera models will likely to be vulnerable to our
modified Mirai malware without any further efforts on our
part.

2) Remote access to IoT devices by unauthorized parties:
Remote connection to an IoT device, via Telnet or SSH
which can be performed by malware for various purposes,
can also be used as an easy and quick way for an at-
tacker to gain control over a device remotely. The Philips
In.Sight wireless HD baby monitor (B120N/10) was designed
to allow parents to watch, listen, and talk to their newborn
[40]. During the reverse engineering process several critical
engineering faults that allow an outsider to use this device
were discovered. Credentials were revealed that allow anyone
to connect through the open SSH port in all Philips In.Sight
B120N monitors. Additionally, SSL private keys that allow
an attacker to perform man-in-the-middle attacks on device
communication were discovered. Furthermore, as shown in
the previous section, after gaining access to an IoT device the
attacker can extract sensitive information about the device and
its owner (for example, the credentials for the Wi-Fi network
from the devices unencrypted configuration file).

3) Execution of arbitrary code on IoT devices: During the
reverse engineering process, software is often uploaded onto
the device in various ways. The ability to upload software and
maintain persistency after restarts has significant implications
on device security. It has been shown that it is possible to
gain complete control of a device when physical access is
available, and physical access to a device can be used to
modify the device’s behavior even when the device is no longer
in proximity.

B. Possible Theoretical Attacks

1) Discovery of new vulnerabilities: By using the black
box reverse engineering process, an attacker that possesses an
unknown device (e.g., a security camera with no identification
markings printed on it) that was obtained from a public area
may extract crucial or sensitive information. During the reverse
engineering we found out that many IoT devices had old OS or
firmware versions that are now outdated, or have been patched
when vulnerabilities were discovered or fixed in later versions.
After identifying the firmware or OS version of an IoT device,
the attacker can search the Internet for known vulnerabilities
or even find this information in the release notes of more
updated versions. Furthermore, after obtaining the firmware
the attacker can scan the software for security holes using
static analysis methods [41], [34].

2) Extraction of secrets from publicly accessible IoT de-
vices: Many IoT devices are intended for outdoor installation
(e.g., security cameras, smart doorbells, etc.). These products
are mounted outside or in large halls and can be accessed
by strangers. For example, the Ennio doorbell (SYWIFI002)
contains a camera, microphone, and speaker in order to
monitor and control entrance to a facility; the doorbell can
also be wired to a door or a gate for remote unlocking. The
doorbell is typically installed outside and may be accessed
from the street. A direct result of the device’s accessibility is
the ability of an attacker to physically modify or sabotage the
device. However, it is not just the device that may be affected,
since confidential material may be extracted from the device
giving the attacker access to the whole network.

3) Supply chain attacks: Malicious modification can also
be performed as a part of the supply chain. An untrustworthy
vendor or courier can reverse engineer a device without having
any previous knowledge about it and perform modifications to
the device. Once access had been gained, the software can be
modified in ways that are not visible to the consumer. The
user of an IoT device may utilize it without knowing it was
tampered with, and perhaps even equipped with a backdoor or
some other malware.

C. Beneficial Uses of the Reverse Engineering Process

There are uses of reverse engineering that are not malicious
or illegal and can benefit the owner. Low-end products are
often accompanied with insufficient information about their
hardware or software. A concerned consumer can use the
process we’ve presented to learn about the device and its
properties. If the device has been rebranded the consumer
could search the Internet for similar devices provided by other

10

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

vendors. The consumer obtains the ability to learn about the
device’s vulnerabilities and perhaps even upgrade the firmware
and secure the device. This process can be performed on many
types of IoT devices and may also be helpful in securing
products no longer supported by vendors. Becoming more
knowledgeable and informed regarding the device’s software
and hardware can not only help the customer get to know their
product; it also allows the owner to customize the device to
meet his/her needs. After gathering the desired information
the owner can manipulate the firmware or configuration and
develop the device further, and even add missing functionality.
Modification of stock devices can also be used to hinder
censorship and other information blocking instruments.

V. DISCUSSION

As the IoT market evolves, the competition among vendors
in the race to be the first to create better and cheaper devices
increases. This pressure may affect the products’ design and
lead to the release of devices with critical security weaknesses.
Time is not the only obstacle for creating a secure product;
as competition drives the prices down, the production process
must also become cheaper. Although the hardware engineers
designing the product often lack cyber security knowledge,
employing penetration testers and security analysts may be
very expensive. This trade-off between money and security
usually favors the production of cheaper but less safe products.
A gap exists between the amount that is known about new
devices on the marketplace and what is needed for assessing
and ensuring their security. The reverse engineering process
empowers consumers and researchers with abilities to discover
important details regarding devices available on the market and
benchmark their security.

A. Recommendations for Implementers

Based on the analysis performed and results obtained in
this research, we make the following recommendations for
improving the security of IoT devices.

1) Removing UART ports: UART ports typically have no
function in mature devices. While obfuscation of UART ports
is a widely used technique for hindering reverse engineering,
it may not be effective in the face of devices such as the
UART discovery assistant module described in Subsection
II-A3. Whenever possible, UART ports should be removed
from finalized products, and their terminals should not appear
in board designs.

2) Restricting access to UART ports: In situations where
UART ports are essential in consumer products, they can be
set up as read-only. An example can be seen in the debug port
available in Google Nexus phones that can be accessed through
the headphone port; The system logs are funneled using UART
communication while maintaining a read-only mode.

3) Protecting UART ports: If a UART port is required
and must be write-enabled, certain protective measures should
be considered. Previous works suggested safeguarding UART
ports in a similar fashion to JTAG protection [42].

4) Hardening bootloader security: Hardening of bootloader
security should be considered; bootloaders can be protected by
physical means so that they only go into debug mode when
specified electrical criteria are met or when using passwords.
Although bootloader passwords were observed during our sur-
vey, retrieval of the passwords was easy using communication
dumps, meaning that more sophisticated defenses should be
employed.

5) Usage of unique passwords: Using the same passwords
in devices of the same model or manufacturer enables a
low resource attack to be amplified across many devices. In
addition to hashing passwords with a strong hashing algorithm
such as SHA-516 crypt, strong unique passwords should be
used for each and every device.

6) Facilitating password replacement: Hard-coding pass-
words should be avoided. Users must be able and encouraged
to replace passwords frequently and easily.

7) Encryption of device memory: When possible all of the
device’s memory should be encrypted, similarly to what is
done with mobile devices.

8) Encryption of sensitive data: All sensitive data stored
on the device, including configuration, should be encryption.

9) Pen-testing devices: Many of the issues uncovered in
this paper could have been easily detected prior to product
launch. Therefore, devices should be pentested before being
deployed. The techniques shown in this paper and others such
as those shown by Ling et al. [33] can be used to create an
infrastructure for device audit.

B. Conclusion

The increase in IoT technology’s popularity holds many
benefits, but this surge of new, innovative, and cheap devices
is accompanied by complex security and privacy challenges.
Vulnerabilities and design flaws in seemingly innocent and
ubiquitous IoT devices are an opening for an adversary to
exploit and misuse. As shown in Section IV, an attacker that
gains remote or physical access to an IoT device may snoop
on the owner’s personal or sensitive information and use the
device’s capabilities for their own benefit. The evolution of
cyber crime has not bypassed the IoT, and in recent years we
have witnessed new types of cyber attacks that involve IoT
devices. The accessibility of the black box reverse engineering
process may accelerate the attacker’s work and introduce new
IoT cyber threats.

REFERENCES

[1] Gartner, “Gartner says 4.9 billion connected "things" will be in use
in 2015,” 2014. Available at http://www.gartner.com/newsroom/id/
2905717.

[2] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the internet-of-things,” in Proceedings of the 14th ACM Workshop on
Hot Topics in Networks, Philadelphia, PA, USA, November 16 - 17, 2015
(J. de Oliveira, J. Smith, K. J. Argyraki, and P. Levis, eds.), pp. 5:1–5:7,
ACM, 2015.

[3] D. Lund, C. MacGillivray, V. Turner, and M. Morales, “Worldwide and
regional internet of things (iot) 2014–2020 forecast: A virtuous circle
of proven value and demand,” International Data Corporation (IDC),
Tech. Rep, 2014.

[4] Nest Labs, “Nest learning smart thermostat.” Available at https://nest.
com/thermostat/meet-nest-thermostat/.

11

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

[5] R. Mahmoud, T. Yousuf, F. A. Aloul, and I. A. Zualkernan, “Internet
of things (iot) security: Current status, challenges and prospective
measures,” in 10th International Conference for Internet Technology
and Secured Transactions, ICITST 2015, London, United Kingdom,
December 14-16, 2015, pp. 336–341, IEEE, 2015.

[6] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things: The road ahead,” Computer
Networks, vol. 76, pp. 146–164, 2015.

[7] I. Alqassem and D. Svetinovic, “A taxonomy of security and privacy
requirements for the internet of things (iot),” in 2014 IEEE International
Conference on Industrial Engineering and Engineering Management,
IEEM 2014, Selangor Darul Ehsan, Malaysia, December 9-12, 2014,
pp. 1244–1248, IEEE, 2014.

[8] Z. Zhang, M. C. Y. Cho, C. Wang, C. Hsu, C. K. Chen, and S. Shieh,
“Iot security: Ongoing challenges and research opportunities,” in 7th
IEEE International Conference on Service-Oriented Computing and
Applications, SOCA 2014, Matsue, Japan, November 17-19, 2014,
pp. 230–234, IEEE Computer Society, 2014.

[9] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and
privacy issues in internet-of-things,” IEEE Internet of Things Journal,
2017.

[10] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, 2017.

[11] M. W. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen,
“Uninvited connections: A study of vulnerable devices on the internet
of things (iot),” in IEEE Joint Intelligence and Security Informatics
Conference, JISIC 2014, The Hague, The Netherlands, 24-26 September,
2014, pp. 232–235, IEEE, 2014.

[12] Shodan, “Shodan is the world’s first search engine for internet-connected
devices.” Available at https://www.shodan.io/.

[13] R. Bodenheim, J. Butts, S. Dunlap, and B. E. Mullins, “Evaluation of the
ability of the shodan search engine to identify internet-facing industrial
control devices,” IJCIP, vol. 7, no. 2, pp. 114–123, 2014.

[14] M. Tellez, S. El-Tawab, and H. M. Heydari, “Improving the security of
wireless sensor networks in an iot environmental monitoring system,”
in Systems and Information Engineering Design Symposium (SIEDS),
2016 IEEE, pp. 72–77, IEEE, 2016.

[15] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
Generation Comp. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[16] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” Commun. ACM,
vol. 52, no. 5, pp. 91–98, 2009.

[17] J. Lanet, G. Bouffard, R. Lamrani, R. Chakra, A. Mestiri, M. Monsif,
and A. Fandi, “Memory forensics of a java card dump,” in Smart Card
Research and Advanced Applications - 13th International Conference,
CARDIS 2014, Paris, France, November 5-7, 2014. Revised Selected
Papers (M. Joye and A. Moradi, eds.), vol. 8968 of Lecture Notes in
Computer Science, pp. 3–17, Springer, 2014.

[18] J. Obermaier and M. Hutle, “Analyzing the security and privacy of
cloud-based video surveillance systems,” in Proceedings of the 2nd ACM
International Workshop on IoT Privacy, Trust, and Security, pp. 22–28,
ACM, 2016.

[19] C. Hollabaugh, Embedded Linux : hardware, software, and interfacing.
Boston: Addison-Wesley, 2002.

[20] R. Davis, N. Merriam, and N. Tracey, “How embedded applications
using an rtos can stay within on-chip memory limits,” in 12th EuroMicro
Conference on Real-Time Systems, pp. 71–77, 2000.

[21] Atmel Corporation, “Attiny13a datasheet,” May 2012. Available at http:
//www.atmel.com/images/doc8126.pdf.

[22] Anonymous, “The author’s github repository. details omitted for anony-
mous submission,” 2017. Available at http://www.qqq.com.

[23] M. S. Pedro, M. Soos, and S. Guilley, “FIRE: fault injection for reverse
engineering,” in Information Security Theory and Practice. Security and
Privacy of Mobile Devices in Wireless Communication - 5th IFIP WG
11.2 International Workshop, WISTP 2011, Heraklion, Crete, Greece,
June 1-3, 2011. Proceedings (C. A. Ardagna and J. Zhou, eds.), vol. 6633
of Lecture Notes in Computer Science, pp. 280–293, Springer, 2011.

[24] L. Goubet, K. Heydemann, E. Encrenaz, and R. D. Keulenaer, “Efficient
design and evaluation of countermeasures against fault attacks using
formal verification,” in Smart Card Research and Advanced Applications
- 14th International Conference, CARDIS 2015, Bochum, Germany,
November 4-6, 2015. Revised Selected Papers (N. Homma and M. Med-
wed, eds.), vol. 9514 of Lecture Notes in Computer Science, pp. 177–
192, Springer, 2015.

[25] J. DaRolt, A. Das, G. D. Natale, M. Flottes, B. Rouzeyre, and
I. Verbauwhede, “Test versus security: Past and present,” IEEE Trans.
Emerging Topics Comput., vol. 2, no. 1, pp. 50–62, 2014.

[26] R. J. Anderson and M. G. Kuhn, “Low cost attacks on tamper resistant
devices,” in Security Protocols, 5th International Workshop, Paris,
France, April 7-9, 1997, Proceedings (B. Christianson, B. Crispo,
T. M. A. Lomas, and M. Roe, eds.), vol. 1361 of Lecture Notes in
Computer Science, pp. 125–136, Springer, 1997.

[27] D. Vlasenko, “Busybox: The swiss army knife of embedded linux.”
Available at https://busybox.net/.

[28] F. Courbon, S. Skorobogatov, and C. Woods, “Reverse engineering flash
EEPROM memories using scanning electron microscopy,” in Smart Card
Research and Advanced Applications - 15th International Conference,
CARDIS 2016, Cannes, France, November 7-9, 2016, Revised Selected
Papers (K. Lemke-Rust and M. Tunstall, eds.), vol. 10146 of Lecture
Notes in Computer Science, pp. 57–72, Springer, 2016.

[29] “Firmware-mod-kit github repository.” Available at https://github.com/
mirror/firmware-mod-kit.

[30] “crypt(3) man page.” Available at http://man7.org/linux/man-pages/
man3/crypt.3.html.

[31] “John the ripper password cracker.” Available at http://www.openwall.
com/john/.

[32] “Hashcat password recovery tool.” Available at https://hashcat.net/.
[33] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu, “Security vulner-

abilities of internet of things: A case study of the smart plug system,”
IEEE Internet of Things Journal, 2017.

[34] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014. (K. Fu and J. Jung, eds.), pp. 95–110, USENIX Association, 2014.

[35] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.,” in NDSS, 2016.

[36] M. Liu, Y. Zhang, J. Li, J. Shu, and D. Gu, “Security analysis of vendor
customized code in firmware of embedded device,” in International Con-
ference on Security and Privacy in Communication Systems, pp. 722–
739, Springer, 2016.

[37] Gordon Lyon, “Nmap security scanner.” Available at https://nmap.org/.
[38] B. Krebs, “Krebsonsecurity hit with record ddos.” Available at https:

//krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/.
[39] “Mirai github repository.” Available at https://github.com/jgamblin/

Mirai-Source-Code.
[40] Philips, “Philips in.sight wireless hd baby monitor.” Available at http:

//www.philips.co.uk/c-p/B120N_10/in.sight-wireless-hd-baby-monitor/
overview.

[41] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation,” in 20th Annual Network
and Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013, The Internet Society, 2013.

[42] K. Rosenfeld and R. Karri, “Attacks and defenses for JTAG,” IEEE
Design & Test of Computers, vol. 27, no. 1, pp. 36–47, 2010.

Omer Shwartz (S’ 17) received his M.Sc. degree from Ben-Gurion University
of the Negev (BGU) in 2018. He is a doctoral candidate in BGU’s Department
of Software and Information Systems Engineering. His current research
interests include hardware security and software security in smart device
context.

Yael Mathov is an M.Sc. student in the Department of Software and
Information Systems Engineering in Ben-Gurion University of the Negev. She
received her B.Sc. degree in Computer Science from Ben-Gurion University
of the Negev. Her research interests include IoT security, reverse engineering,
cyber security and machine learning.

Michael Bohadana is an M.Sc. student in the Department of Software and
Information Systems Engineering in Ben-Gurion University of the Negev.

12

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

Yossi Oren (SM’ 17) received his M.Sc. degree in Computer Science
from the Weizmann Institute of Science, Israel, and his Ph.D. degree in
Electrical Engineering from Tel Aviv University, Israel, in 2008 and 2013
respectively. He is a Senior Lecturer (Assistant Professor) with the Department
of Software and Information Systems Engineering in Ben-Gurion University,
Israel. His research interests include implementation security (power analysis
and other hardware attacks and countermeasures; low-resource cryptographic
constructions for lightweight computers) and cryptography in the real world
(consumer and voter privacy in the digital era; web application security).

Yuval Elovici is the director of Deutsche Telecom Laboratories at Ben-Gurion
University of the Negev (BGU), Israel, and is a member of the information
systems engineering department. His main areas of interest are computer and
network security, information retrieval, and data mining. Elovici has a PhD
in information systems from Tel-Aviv University, Israel.

13

