
SUBMISSION TO THE IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Remanence Decay Side-Channel: The PUF Case
Shaza Zeitouni, Yossef Oren, Christian Wachsmann, Patrick Koeberl, Ahmad-Reza Sadeghi

Abstract—We present a side-channel attack
based on remanence decay in volatile memory and
show how it can be exploited effectively to launch
a non-invasive cloning attack against SRAM PUFs
— an important class of PUFs typically proposed
as lightweight security primitives which use exist-
ing memory on the underlying device. We vali-
date our approach using SRAMPUFs instantiated
on two 65nm CMOS devices. We discuss coun-
termeasures against our attack and propose the
constructive use of remanence decay to improve
the cloning-resistance of SRAM PUFs.
Moreover, as a further contribution of indepen-

dent interest, we show how to use our evaluation
results to significantly improve the performance of
the recently proposed TARDIS scheme, which is
based on remanence decay in SRAM memory and
used as a time-keeping mechanism for low-power
clockless devices.

I. Introduction
Physically Unclonable Functions (PUFs) have been

an attractive research area and are increasingly
proposed as building blocks in cryptographic pro-
tocols and security architectures. One major class
of PUFs and the focus of this paper are memory-
based PUFs [1], [2], [3], [4], [5], [6]. These PUFs
are commonly proposed as an alternative to se-
cure non-volatile storage and are used in a vari-
ety of anti-counterfeiting mechanisms and authen-
tication schemes [7], [8], [1], [9], [10], [11], [12].
Today, PUF-based security products are already
on the market, mainly targeting IP-protection and
anti-counterfeiting applications as well as Radio-
Frequency Identification (RFID) systems [13], [14],
[15].
Memory-based PUFs are arrays of volatile memory

elements, such as SRAM cells [1], [5], flip-flops [2],
[6], or latches [3], [4]. These elements are typically bi-
stable circuits with two stable states corresponding
to a logical zero and one. By controlling the voltage

Y. Oren is affiliated with Ben-Gurion University of the
Negev, Beer-Sheva, Israel. E-mail: yos@bgu.ac.il.
A.-R. Sadeghi is affiliated with Technische Universität Darm-

stadt, Germany. E-mail: ahmad.sadeghi@trust.cased.de.
P. Koeberl, C. Wachsmann and S. Zeitouni are affiliated

with Intel Collaborative Research Institute for Secure Com-
puting (Intel CRI-SC), Darmstadt, Germany. E- mail: patrick.
koeberl@intel.com, christian.wachsmann@trust.cased.de and
shaza.zeitouni@trust.cased.de.

level at the inputs of the elements, they enter either
one of the two states. Due to the bi-stability, the
elements retain their states as long as they are
supplied with power. Memory-based PUFs exploit
the following phenomenon: When powering up such
an element without applying any voltage at the bit-
line input, its state mainly depends on the physical
characteristics of the underlying transistors. Due to
uncontrollable manufacturing variations, these char-
acteristics are unique for each physical instantiation
of the element. Hence, the state of all memory ele-
ments, after powering the memory without without
applying any voltage at the bit-lines, can be used
as a unique identifier, known as ‘PUF response’, of
the device containing the memory. However, since the
response of a memory-based PUF could be read out
and copied to another device, protecting the PUF re-
sponse against unauthorized accesses is considered a
fundamental requirement of memory-based PUF im-
plementations, which implies mimimally the presence
of some security mechanism to prevent unauthorized
accesses to the PUF response.
Memory-based PUFs are considered to be cost-

effective since it is possible to use the already existing
memory of the device as PUFs [8], [1], [11], [16], [17],
[18], [19]. However, in this case the memory is also
used to store data of some other components in the
device and will be overwritten at some point of time.
In particular, volatile memory is typically initialized,
i.e., overwritten with a known bit pattern, usually
all zeros or ones, before it is used for data storage.
Further, although volatile memory loses the data it
stores when it is powered off, the data are not im-
mediately lost but rather decay slowly over time [20],
[21]. Hence, it is very likely that any data written to
the memory of a memory-based PUF may affect the
PUF response when removing or reducing the power
supply for short time periods. Although this effect
has been discussed in the literature [22], [23], [5], [24],
[25], [26], it has never been used to attack memory-
based PUFs. A preliminary and shorter version of
this work has been published at [27]. This is an
extended version that includes new evaluation results
of voltage-based attacks.

Contribution. We present the first side-channel
attack based on the remanence decay in volatile

yos@bgu.ac.il
ahmad.sadeghi@trust.cased.de
patrick.koeberl@intel.com
patrick.koeberl@intel.com
christian.wachsmann@trust.cased.de
shaza.zeitouni@trust.cased.de


memory and show how it can be exploited for a non-
invasive cloning attack against SRAM-based PUFs.
To the best of our knowledge this is the first cloning
attack on memory-based PUFs based on remanence
decay. In particular, our contributions are as follows:

First cloning attack on SRAM PUFs using remanence
decay side channels. Our attack recovers the secret
response of a memory-based PUF in applications
where the underlying memory is overwritten with
a known value after the PUF response has been
read. This attack can be applied to all memory-based
PUF systems that share the PUF memory with some
other functionality, which is often suggested in the
literature to allow cost-effective PUF implementa-
tions [8], [1], [11], [16], [17], [18], [19]. We show that
the attack is successful against small memory-based
PUFs even when using common lab equipment. The
requirements of the attack are that the adversary can
control the supply voltage of the device containing
the PUF and that the PUF memory is initialized
with a known value before it is used as a data storage,
which is typically the case.

Experimental validation of the attack. We validate
the feasibility of our attack using SRAM PUFs in-
stantiated on two 65nm CMOS devices, and suggest
several improvements to increase the performance of
our attack.

Constructive use of remanence decay. We propose
using remanence decay as a source of side-channel in-
formation to enhance the cloning-resistance of SRAM
PUFs. Cloning such a PUF would require emulating
the remanence decay behavior, which increases the
cost of cloning or even render it uneconomical.

Improved TARDIS time-keeping mechanism. As a
contribution of independent interest, we propose a
time-memory tradeoff to dramatically reduce the
complexity of the recently proposed TARDIS [21]
time-keeping mechanism for clockless devices from
linear to logarithmic time, enhancing its applicability
to many practical scenarios; we further propose a sim-
plified version of TARDIS which satisfies the main
functional requirements of the TARDIS mechanism
while requiring only constant time and minimal non-
volatile storage.

Outline. We introduce our notation, the system and
the adversary model in Section II. The attack is de-
scribed in Section III and its experimental validation
is presented in Section IV. A practical instantiation
of our attack is shown in Section V. We discuss the
impact and improvements of the attack in Section VI
and make suggestions on the constructive use of

remanence decay, including the improved TARDIS
algorithm, in Section VII. We give an overview of
the related work in Section VIII and finally conclude
in Section IX.

II. Model and Preliminaries

We consider devices that contain memory-based
PUFs, where the underlying memory can be over-
written with a known value after the PUF response
has been read. This typically happens when the PUF
memory is also used for data storage by some other
functionality in the device, which is a common ap-
proach to cost-effective implementations of memory-
based PUFs [8], [1], [11], [16], [17], [18], [19].

Initial state. Volatile memory is typically initialized,
i.e., overwritten with a specific bit pattern (usually
all zeroes or ones), before it is used as a data storage.
We denote this pattern as the initial state of the
memory.

Definition 1 (Initial state). The initial state of the
memory is the matrix ~Minit representing the data that
is written to the memory before it is used as a data
storage.

Start-up state. Observe that, typically the data
stored in the volatile memory are not immediately
lost when the power to the memory is removed or
decreased but decay slowly over time [20], [21]. Hence,
when powered off only for a short time, the memory
may still hold some of the data that have been
written to it before the power-cycle. We capture this
aspect by introducing the notion of the start-up state.

Definition 2 (Start-up state). Let vnom be the nom-
inal supply voltage of the memory Vdd.
Consider the following experiment:

1) Set supply voltage of memory elements to 0 V
for time t

2) Set supply voltage of memory elements to vnom
3) Read the states of all memory elements and

store them in a matrix ~Mt

We say that ~Mt is the start-up state of the memory
with respect to time t.
Further, consider the following experiment:

1) Set supply voltage of memory elements to
v < vnom for constant time τ

2) Set supply voltage of memory elements to vnom
3) Read the states of all memory elements and

store them in a matrix ~Mv

We say that ~Mv is the start-up state of the memory
with respect to voltage v and a constant time τ .

2



PUF state. The response of a memory-based PUF
corresponds to the start-up state of the underlying
memory, where the memory has been powered off
long enough that any data previously stored in it
have decayed. We capture this aspect by introducing
the notion of the PUF state of a memory.

Definition 3 (PUF state). Let t∞ indicates the time
required for previously stored data to completely decay
from the memory. We denote the start-up state ~Mt∞
as the PUF state ~MPUF of the memory, i.e., ~MPUF :=
~Mt∞ .

Observe that, in the case where the memory has
been powered off only for a short time before it is
used as a PUF, the PUF response may be distorted
by the data previously stored in the memory.

Device behavior. At some point while the device is
running, it reads the start-up state of its memory and
uses it as the PUF response in some computation. In
many applications the result of this computation can
be observed from outside the device. For instance, in
PUF-based (authentication) protocols [8], [11], [12],
the device receives some query Q and responds with
a message X that depends on the PUF response.
In these schemes, the response of the memory-based
PUF is typically used to derive a cryptographic secret
that is used to compute X . However, the device be-
havior is not limited to challenge-response protocols.
In the extreme case X could be only one single bit of
information, e.g., indicating whether the correct PUF
response was extracted from the memory or not. For
instance, in PUF-based IP protection schemes [1], [9],
[10], the device refuses to boot in the case where the
PUF response is incorrect, which can be observed by
the adversary. We capture this aspect by introducing
the notion of device behavior.

Definition 4 (Device behavior). Let ~M be the start-
up state of the device memory with respect to some
time t or voltage v (Definition 2). Further, let Q
be some query that can be sent to the device. We
denote with X = Dev( ~M ,Q) the response to Q of
the device using the start-up state ~M. The algorithm
Dev describes the behavior of the device with respect
to Q and ~M.

Assumptions and adversary model. Following
the common adversary model of memory PUFs [8],
[1], [11], [16], [17], [18], [19], we assume that the ad-
versaryA cannot simply read the plain PUF response
from the underlying memory. This means thatA does
not know the start-up state ~M (Definition 2) with
respect to any time t or voltage v and, in particular,
A does not know the PUF state ~MPUF (Definition 3).

Further, we assume that all algorithms implemented
in the device are known to A (Kerckhoffs’ principle).
This means that A could compute X = Dev( ~M ,Q) if
he knew ~M and Q. Moreover, A knows the initial
state ~Minit (Definition 1) that is part of the algo-
rithms used by the device. Furthermore, we assume
that A can observe the device behavior (Definition 4)
and that A can control the time t the memory is
powered off before it is used as a PUF as well as the
supply voltage v of the memory. This means that A
can send some query Q to the device and observe
its reaction X that depends on the device’s start-up
state ~M .

III. Cloning Attack Using Remanence Decay
The high level idea and approach of our attack is to

recover the PUF response in a device that overwrites
the SRAM of the PUF with some data that are
known to the adversary A (cf. Section II). The attack
principle is similar to Biham-Shamir attack [28] to
extract a secret key stored in some device (e.g., a
smart card).
The Biham-Shamir attack consists of two phases.

In the first phase,A collects a sequence of ciphertexts,
each encrypting the same plaintext with a slightly
different key. In more detail, A requests the device
to encrypt the plaintext and, after he received the
corresponding ciphertext, he injects a fault into the
device that sets one bit of the key to a known value.
A repeats this step until all bits in the key are set
to a value A knows. In the second phase of the
attack, A iteratively recovers the secret key of the
device, starting from the last ciphertext that has
been generated by the device using the key known to
A. A performs an exhaustive search for each key used
by the device to generate each ciphertext collected
in the first phase. Since the keys of two consecutive
ciphertexts differ in at most one single bit and the
value of this bit is known to A, this exhaustive search
is linear in the bit-length of the key. This way, A can
recover the secret key of the device with a total effort
quadratic in the bit-length of the key.
Similarly, we aim at extracting the secret PUF

state from a device containing an SRAM PUF. Simi-
lar to the Biham-Shamir attack, we iteratively collect
a series of device responses to the same query, each
generated using a different start-up state. In each
iteration, we send the query to the device, record
its response (that depends on the start-up state),
and then inject a fault to change some bits in the
start-up state. The fault injection is performed by
carefully controlling the amount of remanence decay
undergone by the SRAM, e.g., by increasing the time
the device is powered off between two iterations,

3



or by reducing the device’s supply voltage for a
fixed time period. Due to the different remanence
decay exhibited by each SRAM cell, for any given
power-off period or reduction of voltage supply, some
SRAM cells will lose the known value of the initial
state and revert back to their unknown PUF state,
some will retain their initial state and some will
exhibit metastable behaviour by taking a random
state. Hence, in contrast to the Biham-Shamir attack,
the number of bits k that are different in the start-up
states used in two consecutive iterations is typically
larger than one bit. However, as we show in Sec-
tion IV, k has an upper bound that highly depends on
the exhaustive method or the computational power
and a lower bound imposed by the accuracy of the
equipment used to control the remanence decay.
In the second phase of the attack, we iteratively

recover the PUF state. A trivial approach would be
to perform a simple exhaustive search for all cells
that have reverted to their PUF state in the start-
up states of two consecutive iterations of phase one.
However, while this approach works for small values
of k, it is inefficient for large values of k. In Section VI
we discuss several approaches to reduce the value
of k by improving the test setup and to reduce the
complexity of the search for the changed bit positions.
Before we describe our attack in detail, we explain
the underlying requirements and building blocks.

Controlling the remanence decay. An essential
requirement for our attack is that the adversary A
can precisely control the remanence decay in the
SRAM. There are two approaches how this can be
achieved. The voltage-based approach directly de-
creases the supply voltage to the chip for a certain
amount of time τ , while the time-based approach sets
the supply voltage of the chip to 0 V for a precisely-
measured amount of time t. In general, the time-
based approach is easier to use since it only requires
a precise timer to trigger the voltage drop, while
the voltage-based approach requires an expensive
precision DC power source. Next, we present results
for both approaches.

Data remanence experiment. One major building
block of our attack is the data remanence experiment
where the adversary A observes how the remanence
decay affects the behavior of the device containing
the PUF.

Definition 5 (Data remanence experiment). Con-
sider a device that overwrites the memory used by the
PUF with some known data. Let vnom be the nominal
supply voltage of the device. Let ~MPUF (Definition 3)
be the PUF state and ~Minit (Definition 1) be the

initial state of the device memory. Further, let Dev
(Definition 4) be the algorithm describing the device
behavior with respect to some start-up state ~Mt or ~Mv
(Definition 2).
The time-based data remanence experiment X =
DRE( ~Minit, t,Q) is as follows:

1) Set the memory content of the device to ~Minit
2) Temporarily set the supply voltage of the device

to 0 V for time t and then set it back to vnom
3) Send the query Q to the device and observe its

response X = Dev( ~Mt ,Q)
Further, we define the voltage-based data remanence
experiment X = DRE( ~Minit, v,Q) as follows:

1) Set the memory content of the device to ~Minit
2) Temporarily set the supply voltage of the device

to v < vnom for a constant time τ and then set
it back to vnom

3) Send the query Q to the device and observe its
response X = Dev( ~Mv,Q)

Finder algorithm. Another building block of our
attack is the finder algorithm, which recovers the
PUF state based on the device behavior observed in
a series of data remanence experiments.

Definition 6 (Finder algorithm). Let ~Mi+1 and ~Mi

be two start-up states (Definition 2) that consist of
n bits and that differ in at most k < n bits, i.e.,
the Hamming distance dist( ~Mi, ~Mi+1) ≤ k. Further,
let Xi+1 = Dev( ~Mi+1,Q) for some arbitrary device
query Q. A finder algorithm is a probabilistic polyno-
mial time algorithm Finder( ~Mi,Q,Xi+1) that returns
~Mi+1.

The finder is most efficient when dist( ~Mi, ~Mi+1) is
minimal, ideally one. In this case, Finder can recover
an unknown n-bit start-up state ~Mi+1 from ~Mi and
Xi+1 by performing a simple exhaustive search with
linear complexity in n. However, dist( ~Mi, ~Mi+1) is
typically larger than one since multiple SRAM cells
may have similar remanence decay behavior, decay
at the same time/voltage, while other SRAM cells
may be metastable (i.e., take a random value) [29],
[21], [30], [31]. In the worst case, where up to k
bits have changed in a start-up state with n bits, a
trivial finder performing an exhaustive search may
require up to

∑k
`=1
(

n
`

)
. Observe that n typically is

a fixed system parameter while k strongly depends
on the quality of the equipment used for controlling
the remanence decay in the SRAM. As we discuss in
Section VI, the adversary can reduce k significantly
by using more accurate equipment and he may also
use a Finder algorithm that is more efficient than the
trivial approach.

4



Algorithm 1 Extracting the PUF state of an SRAM
PUF-enabled device (time-based approach)
Consider a device that uses the same SRAM for the
PUF and some other functionality. Let ~Minit be the
initial state (Definition 1) and t∞ be the decay time
(cf. Definition 3) of the device memory. Further, let
∆t be the difference between the power-off times
used in two consecutive time-based DRE experiments
(cf. Definition 5). Further, let i and f be indices. The
attack works as follows:
1) Fix an arbitrary device query Q
2) Record XPUF = DRE( ~Minit, t∞,Q)
3) Set i← 0 and t0 = 0
4) Repeat:

a) Set i← i+ 1
b) Set ti = ti−1 + ∆t
c) Record Xi = DRE( ~Minit, ti,Q)
d) Stop when Xi = XPUF and set f = i

5) Set i← 0 and ~Mt0 = ~Minit
6) Repeat:

a) Set i← i+ 1
b) Compute ~Mti = Finder( ~Mti−1 ,Q,Xi)
c) Stop when i = f

7) Return Mtf

Details of the attack. The attack is detailed in Al-
gorithm 1 on the example of the time-based approach
and works as follows. The adversary A chooses an
arbitrary device query Q (Step 1) and records the
response XPUF generated by the device using the
PUF state ~MPUF (Step 2). Then, A performs a
series of time-based DRE experiments (Definition 5)
where he slightly increases the power-off time ti used
in each experiment (Steps 3 and 4).1 This way, A
obtains a sequence of device responses X1, . . . ,Xf

to the same query Q generated by the device using
the start-up states ~Mt1 , . . . ,

~Mtf
, respectively, where

dist( ~Mti
, ~Mti+1) for all 1 ≤ i ≤ (f − 1) is upper

bounded by some value k. Observe that ~Mt0 = ~Minit
is the initial state (Definition 1) and ~Mtf

= ~MPUF is
the PUF state (Definition 3) of the SRAM. Next, A
uses the Finder algorithm (Definition 6) to iteratively
recover ~MPUF from the device responses observed in
Steps 3 to 4. Specifically, starting from the known
initial state ~Mt0 = ~Minit, the adversary iteratively
recovers each ~Mti+1 from ~Mti

and Xi+1 untilA arrives
at the PUF state ~Mtf

= ~MPUF.

1An adversary using the voltage-based approach would grad-
ually lower the supply voltage (for a fixed amount of time)
instead of increasing the power-off time.

Theorem 1 (Success of the attack). The attack
in Algorithm 1 successfully recovers the PUF state
~MPUF. The worst case complexity of the attack when
using a trivial Finder algorithm (Definition 6) is
f ·
∑k

`=1
(

n
`

)
, where f is the number of DRE exper-

iments (cf. Definition 5), n is the size of the SRAM,
and k is the maximum Hamming distance of the start-
up states ~Mti

and ~Mti+1 used by the device in two
consecutive DRE experiments for all 1 ≤ i ≤ (f − 1).

Note that the complexity of the attack strongly
depends on the value of k, which highly depends on
the accuracy of the equipment and method used to
control the remanence decay in the SRAM. Typical
values are k = 0.1469 ·n for the time-based approach
and k = 0.1004 · n for the voltage-based approach
(cf. Section IV). Moreover, in our experiments for
the time-based approach we observed a decay time
of t∞ = 2, 000 µs and used ∆t = 1 µs, resulting in
f = d2, 000 µs/1 µse = 2, 000. For the voltage-based
approach we observed remanence decay for supply
voltages between 0.4 V and 0 V and used ∆v = 2 mV ,
resulting in f = d400 mV/2 mV e = 200.

Proof of Theorem 1: It follows from Definition 5
that XPUF = Dev

(
~Mt∞ ,Q

)
and from Definition 3

that ~Mt∞ = ~MPUF. Hence, in Step 2, XPUF is
the response of the device using the PUF state.
Furthermore, it follows from Definition 5 that Xi =
Dev( ~Mti ,Q) in Step 4(c). Hence, after Step 5 we have
obtained a sequence of device responses X0, . . . ,Xf

that correspond to the memory states ~Mt0 , . . . ,
~Mtf

.
Due to the different decay times of the individual
SRAM cells and the metastability in the SRAM, two
memory states ~Mti

and ~Mti+1 differ in at most k < n

bits. Hence, dist( ~Mti
, ~Mti+1) ≤ k and it follows from

Definition 6 that Finder( ~Mti−1 ,Q,Xi−1) = ~Mti
in

Step 6(b). By definition it holds that ~Mt0 = ~Minit
and by induction over i it follows that ~Mtf

= ~MPUF
in Step 7.

It remains to show the complexity of the attack. In
the worst case, Finder performs an exhaustive search
over all

∑k
`=1
(

n
`

)
possible positions of the up to k

bits in which the n-bit state ~Mti+1 may differ from
~Mti . This means that in the worst case Finder must
verify

∑k
`=1
(

n
`

)
guesses to find the correct memory

state ~Mti in each of the f iterations of Step 6(b). This
leads to an overall attack complexity of f ·

∑k
`=1
(

n
`

)
,

which finishes the proof.

IV. Experimental Validation of the Attack

In order to reduce the complexity of the attack, it
is required that only a small number k of SRAM cells
in two consecutive DRE experiments change their

5



Workstation

FPGA board
Evaluation Board
with PUF ASIC

Pulse Generator ASIC
Supply
Voltage

Control and PUF Data

Control

Figure 1: Test setup for the time-based approach
using an Agilent 81150 pulse generator

states during the transition from the known (initial)
state to the final PUF state. This number k is mainly
controlled by two factors: (1) the accuracy of the
equipment used to control the remanence decay of
the memory during the attack and (2) the number of
metastable SRAM cells, i.e., those that take random
states. In this section, we investigate the impact of
both factors on the remanence decay in the SRAM
PUFs implemented in two 65 nm CMOS ASICs. Our
evaluation uses both the time-based and the voltage-
based approach to control the remanence decay.

Test setup. Our analysis is based on data obtained
from two ASICs that have been manufactured in
TSMC 65 nm CMOS technology within an Euro-
practice multi-project wafer run. The ASIC has
been designed within the UNIQUE2 research project.
Each ASIC implements four different SRAM PUF
instances, each using 8 kBytes of SRAM. The test
setup consists of an ASIC evaluation board, a Xilinx
Virtex 5 FPGA board, a power supply; either an
Agilent 81150 pulse/function/arbitrary pulse gener-
ator for the time-based approach or a Keithley 2400
general-purpose sourcemeter for the voltage-based
approach, and a workstation (Figures 1 and 2). The
evaluation board allows controlling the ASIC supply
voltage using an external power supply. In each ex-
periment, we wrote a pre-determined bit pattern (i.e.,
all ones) to the SRAM, used the pulse generator or
sourcemeter to deliver a temporary voltage drop with
precisely controlled width and amplitude and finally
read back the memory contents of the SRAM. The
rated accuracy of the Agilent 81150 pulse generator
has a temporal resolution of 5 ns and an amplitude

2http://www.unique-project.eu/

Workstation

FPGA board 
Evaluation Board
with PUF ASIC

Digital to Analog Converter
ASIC
Supply
Voltage

Control and PUF Data

Control

Figure 2: Test setup for the voltage-based approach
using a Keithley 2400 sourcemeter

resolution of 25 mV. The Keithley 2400 sourcemeter
has a basic accuracy of 50 µV.
To accelerate and simplify the remanence decay

process, we did not place any decoupling capacitors
between the pulse generator/sourcemeter’s output
and the ASIC’s supply voltage input, as shown in [21],
the effect of such a capacitor in the time-based ap-
proach is an increase in the time between the power-
down event and the beginning of remanence decay. In
the voltage-based approach, the capacitor increases
the time required for the ASIC’s power input to
converge to the required value, again resulting in
a slowdown of the remanence decay process. The
interaction with the evaluation board and the ASICs
is performed by the FPGA, which is connected to
a workstation that controls the PUF evaluation and
the pulse generator or the sourcemeter. Further, the
workstation is used to process and store the data
obtained from the ASICs. All tests with the Agi-
lent 81150 pulse generator were performed at room
temperature (approx. 25◦C) in an air conditioned
laboratory. The tests with the Keithley sourcemeter
were performed in a refrigerator at temperatures
between 2.7◦ and 7.6◦C, However, in the time-based
approach, we wanted to capture the effect of power-
off time on data remanence without controlling the
ambient temperature, as it is already known that
some attacks use low temperatures to decelerate data
remanence of SRAM cells [20], [32].

Chip-scale modeling. The purpose of this exper-
iment was to observe and to reproduce the decay
behaviour reported in [21] and to gauge its stability
and reproducibility for the SRAM PUF for the time-
based and the voltage-based approach.

6

http://www.unique-project.eu/


Figure 3: Chip-scale view of remanence decay (time-based approach)

Figure 4: Chip-scale view of remanence decay (voltage-based approach)

Time-based approach. A series of 10,000 data rema-
nence experiments with an initial state ~Minit consist-
ing of only ones was performed. Each experiment was
repeated 10 times with 1,000 different power-off times
t between 300 µs and 2, 000 µs. During the power-
off time the supply voltage was set to 0 V. After
each experiment we measured for each SRAM cell
the probability that it still stores the value we wrote
to it before the power cycle. We call this probability
the bias of the cell.

Voltage-based approach. We performed 30 series of
data remanence experiments with an initial state
~Minit consisting of only ones. Each series consists of
201 experiments, where the voltage was dropped by
2 mV for 1 ms starting at 0.4 V, as the experiments
show no decay to zero in the range between 1.2 V
and 0.4 V, and then set back to the default supply
voltage of 1.2 V. For each experiment, we measured
the probability that each SRAM cell preserves the

value written to it before the power cycle.

Chip-scale results. Our results are depicted in Fig-
ure 3 and Figure 4. The graphs on the right represent
zoomed-in portions of the graphs on the left. In
both figures, the y-axis corresponds to the mean bias
over all SRAM cells, while the x-axis corresponds
to the total time the ASIC was without power in
Figure 3 or to the voltages applied to the ASIC
Figure 4. Each cross in the graphs corresponds to
a single experiment. As shown in the left graph in
Figure 3, the average bias over all SRAM cells decays
very reliably from 1 to the expected 0.5 [30], [31]
during the course of 2 ms, while the left graph in
Figure 4 exhibits the average bias over all SRAM
cells decaying from 1 to 0.5 in the range of 0.4 V to
0 V. The results are also compatible with the findings
in [33], [21], i.e., the typical values of DRV fall in the
range between 80 mV and 250 mV.
As the detailed views on the right of Figure 3

7



and Figure 4 show that, there is a small variation
in the measured bias between identical experiments,
which was either due to the physical limitations of
our test setup or due to those SRAM cells exhibiting
metastability.

Bit-scale modeling. The next experiment investi-
gates whether the individual SRAM cells have differ-
ent transition times and transition voltages, which
is required in our attack. With the transition time
(resp. transition voltage) of an SRAM cell we mean
the point in time (resp. voltage level) where the cell
loses the value that has been written to it and reverts
to its PUF state. Based on the results of the previous
experiment, we estimated the bias of each SRAM cell
over time.

Bit-scale results. Figure 5 and Figure 6 display 2-
D contour plots of the cell-level behaviour of the
SRAM PUF. Again, the graphs on the right represent
zoomed-in portions of the graphs on the left. Each
horizontal row in the graph corresponds to the bias
of a single SRAM cell, selected out of 1000 representa-
tive cells whose final bias were close to zero. We only
selected cells with final bias close to zero since the
cells with a final bias close to one will not show any
decay behavior in our experiment where we wrote a
logical one to all memory cells before the power cycle.
For the purpose of legibility, the cells were sorted
in the graph by their transition time/voltage. The
left and right gray lines on the graphs correspond
to times in Figure 5 and voltages in Figure 6, when
the bias of each bit is one and zero, respectively. The
black line corresponds to the time/voltage when the
bias of each bit is 0.5.
As shown in Figure 5, each individual SRAM cell

has a different remanence decay time surrounded by
a short period of metastability in which the cell may
enter both states. The median metastability period
measured was 30 µs and the worst-case metastability
rate was 14%. Figure 6 shows each individual SRAM
cell has a different remanence decay voltage with a
voltage band on either side exhibiting metastability.
The median metastability voltage was 4 mV and
the worst-case metastability rate was 10%, which is
28% lower than the time-based result. In general, the
maximum size of a PUF that can be attacked using
our methodology is limited by the metastability, as
we discuss further in Section VI.

A detailed look at the evolution of the bias of a
single bit over time and voltage is shown in Figure 7
and Figure 8 respectively, and the small spikes which
can be noted in the otherwise monotonic plots are
probably the result of noise encountered when mea-
suring the bit in its metastable state.

Cross-device comparison. Next we investigated
whether the transition times and transition voltages
of the SRAM cells in one device allow one to in-
fer some information on the transition times and
transition voltages of the SRAM cells in another
device. A second goal of this experiment was to get a
first impression of whether the transition times and
transition voltages in SRAM cells could be used to
identify individual SRAM chips, an idea we discuss
in Section VI. In this experiment, we measured the
bias over time and the transition times and transition
voltages of each SRAM cell in two ASICs. Again, we
considered only cells whose PUF state is zero.

Cross-device results. The results for the time-based
approach as well as voltage-based approach are
shown in Figure 9 and Figure 10 respectively. Each
cross in the graphs corresponds to the bias of a single
SRAM cell. In both figures, the x-coordinate of each
point is the transition time/voltage of the SRAM
cell on the first ASIC, while the y-coordinate is the
transition time/voltage of the same SRAM cell on the
second ASIC. As Figure 9 shows, the transition times
of the two ASICs are virtually uncorrelated, which
we confirmed by computing the normalized cross
correlation ρ of both data sets, which is ρ = 0.002.
Our results are in line with the findings by Hol-
comb et al. [25] who also suggest using the remanence
decay behaviour as a source of unique information to
identify individual devices. Figure 10 also confirms
the same conclusion, i.e. the transition voltages of
the two ASICs are uncorrelated, which is confirmed
by the normalized cross correlation ρ of both data
sets ρ = 0.0012.

Time-Based vs. Voltage-Based Attacks. The
evaluation results in the previous sections confirm
results in the literature [33], [21] and show that the
voltage-based approach is less sensitive to tempera-
ture variations, making it potentially more effective
in an attack than the time-based approach. Our
results are summarized in Table I, which shows that
using the voltage-based approach results in a signifi-
cantly lower metastability rate than using the time-
based approach. This means that a voltage-based
attack may still be effective in situations where the
time-based attack fails. An interesting observation
is that the set of metastable SRAM cells in voltage-
based approach shows 28% improvement over time-
based approach, which indicates that most of the
inaccuracies in our experiments are due to the lim-
itations of our test setup and not due the physical
properties of the SRAM PUF itself.

8



Figure 5: Bit-scale view of remanence decay (time-based approach)

Figure 6: Bit-scale view of remanence decay (voltage-based approach)

V. Effectiveness of the attack in practical
settings

To investigate the effectiveness of our attack in
a practical setting, we created a standard imple-
mentation of an SRAM PUF-based authentication
scheme. This scheme uses a standard secret-key-
based challenge-response protocol and derives the
underlying key from the PUF response using a basic
repetition code [34].3 In more detail, during the en-
rollment of the device, the memory addresses of those

3We omit the linear encoding used in [34] and the privacy
amplification typically used in PUF-based key storage since it
has no effect on our attack.

Table I: Comparison of Voltage-Based and Time-
Based Remanence

Remanence control Voltage-
based

Time-
based

Bits stable at 1 44.82% 43.45%
Bits stable at 0 45.14% 41.86%
Metastability rate (worst case) 10.04% 14.69%

128 SRAM bytes whose PUF state is highly biased
(i.e., that have a Hamming weight of 0, 1, 7, or 8) are
stored as the public helper data, each representing

9



200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6

0.8

1

S
in
g
le

b
it

b
ia
s

T ime without power (µs)

Figure 7: Close-up look at a single bit for the time-based approach

00.050.10.150.20.250.30.350.4

0

0.2

0.4

0.6

0.8

1

S
in
g
le

b
it

b
ia
s

Voltages (V)

Figure 8: Close-up look at a single bit for the voltage-based approach

200 400 600 800 1000 1200 1400 1600 1800 2000
200

400

600

800

1000

1200

1400

1600

1800

2000

Transition time for ASIC 1(µs)

T
ra
n
si
ti
o
n
ti
m
e
fo
r
A
S
IC

2
(µ
s)

Figure 9: Correlation between the transition time in
two different devices

one bit of the secret key stored in the PUF. The
key is reconstructed from the PUF as follows. The
128 SRAM bytes whose addresses are stored in the
helper data are read from the SRAM and the value
of each bit in the key is set as the result of a
simple majority voting over all bits in the respective
byte to ensure that the 128 bits key derived from

00.050.10.150.20.250.30.350.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Transition voltage for ASIC 1 (V)

T
ra
n
si
ti
o
n
vo
lt
a
g
e
fo
r
A
S
IC

2
(V

)

Figure 10: Correlation between the transition voltage
in two different devices

the 128 highly-biased SRAM bytes are stable. Even
though the bits participating in the majority voting
(and their associated transition times/voltages) are
spatially averaged, there is still a single point of
time/voltage for each output bit where a majority
of its constituent bits transit to the PUF state. The
bit-flips before this transition period are absorbed

10



by the error-correcting code and can be ignored by
the attacker. This is a simple example of the general
behaviour of error correcting codes, where the output
symbol changes only after a sufficient number of
errors has accumulated. The resulting secret key
K is then used in the secret key-based challenge-
response protocol, i.e. X = MACK(Q), where MAC
is a Message Authentication Code.
The attack is as in Definition III. However, we

use an optimized Finder algorithm (Definition 6) that
only searches for key candidates with a Hamming
distance less than 10 bits from the previous key,
which significantly improves the performance of the
attack compared to the trivial Finder described in
Definition 6.
The overall running time of the attack is esti-

mated as 253.6 MAC operations. Considering that
modern CPUs can perform 231 AES operations per
second [35], [36], the total cost of the attack on an
AES-based MAC is 222.6 CPU-seconds, or approxi-
mately two CPU-months. The attack can easily be
parallelized by testing multiple key candidates simul-
taneously, making the attack even more practical for
moderately-funded adversaries.

VI. Impact of Our Attack and
Countermeasures

Impact. Our results in Section IV show that by
carefully controlling the power-off times or the supply
voltage of the SRAM PUF, one can reliably control
the number of metastable bits as required by the
attack described in Section III. This means that, even
if we use the trivial finder algorithm discussed in Defi-
nition 6, common lab equipment and the less effective
time-based approach to control the remanence decay
in the SRAM, we can recover a 216-bit SRAM PUF
derived key by making at most 264 calls to the Dev
algorithm (cf. Definition 4). Using the voltage-based
approach with the same finder algorithm and equip-
ment as in the time-based approach, we can extract
the response of a 315-bit SRAM PUF derived key
in the same time. Further, our results in Section V
show that, depending on the post-processing of the
PUF responses, our attack can also be applied to
systems using larger PUFs. Hence, it is problematic
to overwrite the memory of an SRAM PUF with a
known value, which, however, is required when the
PUF memory is also used for other purposes, as sug-
gested in many prior works [8], [1], [11], [16], [17], [18],
[19]. This particularly holds for resource-constrained
devices with only small amounts of SRAM, such
as RFIDs or medical implants [8], [11], [16], where
SRAM PUFs without shared memory are impracti-
cal.

Improving the attack. One approach to lower
the complexity of our attack is using more accu-
rate equipment that allows a very precise control
of the remanence decay in the SRAM using the
voltage-based approach, which limits the number of
metastable bits and the complexity of the finder
algorithm (cf. Definition 6).
Furthermore, several optimizations of the finder

algorithm are possible: The order in which the indi-
vidual SRAM cells transition from their initial state
to their PUF state is different for the time-based and
the voltage-based approach (cf. Section V). Further,
in some scenarios the adversary may be able to
control the initial state of the SRAM. This results in
four different ways to observe the decay behavior of
each SRAM cell and allows the adversary to choose
the way with the lowest metastability rate for his
attack, which can significantly reduce the complexity
of the naïve finder algorithm (cf. Definition 6).
Another approach to improve the complexity of

the finder algorithm is to take advantage of the
algorithms used by the device to process the PUF
responses (cf. Section V). These algorithms typically
include an error correction mechanism such as a fuzzy
extractor [37], which helps to maintain the consis-
tency of the PUF response to the same challenge
under different environmental variations affecting the
underlying physical object. Due to this error correc-
tion the device response changes only when the error
correction mechanism fails, assuming that the fuzzy
extractor generates some key, a wrong key, for any
arbitrary state ~M that differs from ~MPUF with more
t bits, which fuzzy extractor can correct. Hence, the
finder algorithm needs to consider only one single
candidate of each codeword class. This can either be
done explicitly by considering the structure of the
error correcting code or by casting the problem as an
optimization problem and using an optimizer [38].

Countermeasures. There are several countermea-
sures that prevent our attack by breaking the under-
lying assumptions but that are impractical in low-
resource scenarios such as RFIDs and sensors [8], [11],
[16]. One approach to prevent the attack described
in Section III is using an additional memory that
can only be accessed by the PUF. However, this
contradicts the idea of using the existing memory of
the device and significantly increases implementation
costs. Another approach is to wait until any value
stored in the memory has decayed before reading
the PUF response. However, this requires the device
to have some notion of time and increases the boot
time, which can be problematic in some applications.
Further, the attack can be prevented by designing the

11



algorithms processing the PUF response such that
the device behavior for different start-up states is in-
distinguishable by the adversary. However, this might
imply the use of complex cryptographic primitives for
authentication schemes that exceed the capabilities
of resource-constrained devices for which PUFs with
shared memory have been proposed [8], [11], [16].

VII. Constructive Use of Remanence Decay

Device authentication. The remanence decay be-
havior can be used to authenticate an SRAM to
some verifier. Specifically, using the same approach
as in our attack, a verifier could force the SRAM
into a partially reverted state by, e.g., writing some
value to the SRAM and then powering the device off
for a carefully controlled amount of time. Since the
verifier knows the (secret) PUF state of the SRAM
and the decay behavior of the genuine device, he
can determine the partially reverted SRAM state
and check whether it matches the expected state of
the SRAM to be authenticated. Care must be taken
that this additional functionality does not expose the
device to our attack, for example by requiring that
the verifier successfully authenticates to the device
before being allowed to write to the SRAM.
Note that, it is much more difficult to clone such an

SRAM PUF since the clone must emulate the SRAM
decay behavior, which requires the clone to contain
a time-keeping mechanism that raises its costs. Our
results suggest that for an SRAM of size n bits there
are log (n!) bits of entropy encoded in the order at
which individual SRAM cells revert to their PUF
state. However, further evaluations are needed to
assess the practicality of this approach, in particular
the temperature-dependency and the effect of aging
on the decay behavior must be investigated.

Improving the TARDIS time-keeping algo-
rithm. The use of SRAM remanence decay has
recently been proposed as a time-keeping mechanism
for clockless low-power devices, such as passive RFID
tags [21]. This mechanism, called TARDIS, allows
a clockless device to estimate how much time has
passed since its last power-down and aims to im-
pede oracle attacks. TARDIS consists of two main
elements: the Init algorithm which sets all SRAM cells
to a fixed value (all ones) and the Decay algorithm
which determines how long the device has been with-
out power based on the number of ones that are still
stored in the SRAM. Observe that the Init algorithm
requires a one to be written to each cell of the SRAM,
while the Decay algorithm must read the value of each
cell while the device is booting. These two operations

consume a non-negligible amount of power and add
15.2 ms to the start-up time of the device.
Our observations on the behaviour of remanence

decay can be used to dramatically improve the per-
formance of the TARDIS system. As our results show,
the transition time of each bit is uniquely determined
by its individual DRV. By profiling the SRAM in
an offline phase, we can thus determine the order in
which the SRAM cells return to their PUF state and
store this ordering in the non-volatile memory of the
device. Now, if we observe that a certain group of
bits has reverted to its PUF state, we immediately
know that all bits which have a lower transition time
have also returned to their PUF state. Similarly, if
we observe that a certain group of bits is still in
its initial state, we immediately know that all bits
that have a longer transition time are also still in
their initial state. Knowing this ordering, we can
replace the linear-time Decay algorithm of [21] with
the well known binary search algorithm that takes
logarithmic time. To deal with metastability, the
algorithm should sample not only one but a group
of bits for each transition time period.
If the device needs to detect only whether or not

the entire SRAM has returned to its PUF state,
another improvement is possible that dramatically
decreases the running time of both the Init and the
Decay algorithms from linear time to constant time.
In this case, both algorithms need only to access
those SRAM cells that are known to be the last to
revert to the PUF state.
Since most of the applications described in [21]

can be adapted to use this improvement, our results
enhance the applicability of the TARDIS system to
practical scenarios. We stress that the SRAM used
by the TARDIS scheme cannot be used as an SRAM
PUF since its content is well-known in this case.

VIII. Related Work
While the impact of remanence decay on the ran-

domness that can be extracted from SRAM cells and
the reliability of SRAM PUFs has been discussed in
the literature [22], [23], [5], [24], [25], it has never
been used as a side channel to attack SRAM PUFs.
In fact, some papers investigate side channel attacks
in the context of PUFs, mainly focusing on the side
channel leakage of the algorithms processing the
PUF response [39], [40] or proposing combinations
of side channels attacks on PUFs with modeling or
fault injection attacks [41], [42], [43]. The impact of
environmental changes on the repeatability of PUF
response has been introduced as a source of fault
injection attack on arbiter and RO PUFs in [44], and
current-based PUFs in [45], while the same impact

12



has been evaluated in [30], [31] for memory-based
PUFs, however no results on fault injection attacks
have been reported. In contrast, to the best of our
knowledge, we present the first cloning attack that
injects faults into the SRAM PUF and uses the
data remanence effect in SRAM as a side channel
to recover the (secret) PUF response.
It has been shown that SRAM PUFs can be emu-

lated and physically cloned. By physically inspecting
the SRAM hardware the adversary learns informa-
tion that helps emulating the PUF [46]. Further, it
has been shown that after learning the response of
an SRAM PUF p1, a focussed ion beam (FIB) can
be used to modify the circuits of the SRAM cells
of another SRAM PUF p2 so that p2 shows a very
similar challenge/response behavior as p1 [47].
Data remanence in DRAM has been used to ex-

tract security-sensitive data from the random access
memory of PCs and workstations [20]. While these
attacks aim to recover some data that has been
written to an unprotected memory, the goal of our
attack is to recover the start-up pattern of an SRAM
PUF that is typically protected by some kind of
access control mechanism.

IX. Conclusion
We demonstrated a simple non-invasive cloning

attack on SRAM PUFs using remanence decay as a
side-channel and validated its feasibility on 8 KBytes
SRAM PUFs instantiated on two 65 nm CMOS
devices. Our attack and evaluation is general and can
be optimized for concrete systems. Our evaluation
results show that even without optimizations, attacks
on small SRAM PUFs are feasible using common lab
equipment. We discussed countermeasures against
our attack and suggest using remanence decay to
improve the cloning-resistance of SRAM PUFs. As
a contribution of independent interest, we showed
how our evaluation results can be used to improve
the performance of TARDIS [21], a recently proposed
time-keeping mechanism for clockless devices.
We investigated both the time-based approach

and the voltage-based approach to control the data
remanence decay in the SRAM. Our results show that
the voltage-based approach is more promising than
the time-based approach. Directions for future work
include the design of non-trivial finder algorithms
that, e.g., exploit the properties of the algorithms
used by the device processing the PUF response.

Acknowledgements
We thank Ünal Kocabaş for preparing the lab

experiments in the first phase of this work. The

development and manufacturing of the PUF ASIC
used in this work has been supported by the Euro-
pean Commission under grant agreement ICT-2007-
238811 UNIQUE. This work has been co-funded by
the DFG as part of project P3 within the CRC 1119
CROSSING.

References

[1] J. Guajardo, S. S. KuMar., G.-J. Schrijen, and P. Tuyls,
“Physical unclonable functions and public-key crypto for
FPGA IP protection,” in Field Programmable Logic and
Applications (FPL). IEEE, 2007, pp. 189–195.

[2] R. Maes, P. Tuyls, and I. Verbauwhede, “Intrinsic PUFs
from flip-flops on reconfigurable devices,” in Benelux
Workshop on Information and System Security, 2008.

[3] Y. Su, J. Holleman, and B. P. Otis, “A digital 1.6 pJ/bit
chip identification circuit using process variations,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 1, pp. 69–77,
2008.

[4] S. S. KuMar., J. Guajardo, R. Maes, G.-J. Schrijen, and
P. Tuyls, “Extended abstract: The butterfly PUF pro-
tecting IP on every FPGA,” in Workshop on Hardware-
Oriented Security (HOST). IEEE, June 2008, pp. 67–70.

[5] D. Holcomb, W. P. Burleson, and K. Fu, “Power-Up
SRAM state as an identifying fingerprint and source of
true random numbers,” IEEE Transactions on Comput-
ers, vol. 58, no. 9, pp. 1198–1210, 2009.

[6] V. van der Leest, G.-J. Schrijen, H. Handschuh, and
P. Tuyls, “Hardware intrinsic security from D flip-flops,”
in ACM Workshop on Scalable Trusted Computing (ACM
STC). ACM, 2010, pp. 53–62.

[7] D. Lim, J. W. Lee, B. Gassend, E. G. Suh, M. van Dijk,
and S. Devadas, “Extracting secret keys from integrated
circuits,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 13, no. 10, pp. 1200–1205,
2005.

[8] P. Tuyls and L. Batina, “RFID-tags for anti-
counterfeiting,” in Topics in Cryptology (CT-RSA),
ser. LNCS, vol. 3860. Springer, 2006, pp. 115–131.

[9] J. Guajardo, S. S. KuMar., G.-J. Schrijen, and P. Tuyls,
“Brand and IP protection with physical unclonable func-
tions,” in IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, May 2008, pp. 3186–3189.

[10] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC:
ending piracy of integrated circuits,” Computer, vol. 43,
no. 10, pp. 30–38, 2010.

[11] A.-R. Sadeghi, I. Visconti, and C. Wachsmann, “Enhanc-
ing RFID security and privacy by physically unclonable
functions,” in Towards Hardware-Intrinsic Security, ser.
Information Security and Cryptography. Springer, 2010,
pp. 281–305.

[12] I. Eichhorn, P. Koeberl, and V. van der Leest, “Logically
reconfigurable PUFs: Memory-based secure key storage,”
in ACM Workshop on Scalable Trusted Computing (ACM
STC). ACM, 2011, pp. 59–64.

[13] Verayo Inc, “Product webpage,” http://www.verayo.
com/product/products.html, 2013.

[14] Intrinsic ID, “Product webpage,” http://www.intrinsic-
id.com/products.htm, 2013.

[15] NXP Semiconductors N.V., “NXP strengthens
SmartMX2 security chips with PUF anti-cloning
technology,” 2013.

[16] J. Guajardo, M. Asim, and M. Petković, “Towards reli-
able remote healthcare applications using combined fuzzy
extraction,” in Towards Hardware-Intrinsic Security, ser.
Information Security and Cryptography. Springer, 2010,
pp. 387–407.

13

http://www.verayo.com/product/products.html
http://www.verayo.com/product/products.html
http://www.intrinsic-id.com/products.htm
http://www.intrinsic-id.com/products.htm


[17] S. Kardas, M. S. Kiraz, M. A. Bingol, and H. Demirci,
“A novel RFID distance bounding protocol based on physi-
cally unclonable functions,” in Radio Frequency Identifica-
tion: Security and Privacy Issues (RFIDSec), ser. LNCS.
Springer, June 2011.

[18] P. Koeberl, J. Li, A. RaJan., C. Vishik, and W. Wu,
“A practical device authentication scheme using SRAM
PUFs,” in Conference on Trust and Trustworthy Comput-
ing (TRUST), ser. LNCS, vol. 6740. Springer, June 2011,
pp. 63–77.

[19] P. Koeberl, J. Li, R. Maes, A. RaJan., C. Vishik, and
M. Wójcik, “Evaluation of a PUF device authentication
scheme on a discrete 0.13µm SRAM,” in International
Conference on Trusted Systems (INTRUST), ser. LNCS,
vol. 7222. Springer, 2012, pp. 271–288.

[20] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten, “Lest we remember: Cold-boot at-
tacks on encryption keys,” Communications of the ACM,
vol. 52, no. 5, pp. 91–98, May 2009.

[21] A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber, W. P.
Burleson, and K. Fu, “TARDIS: Time and remanence de-
cay in SRAM to implement secure protocols on embedded
devices without clocks,” in USENIX Security Symposium.
USENIX Association, 2012, pp. 36–52.

[22] C. Tokunaga, D. Blaauw, and T. Mudge, “True random
number generator with a metastability-based quality con-
trol,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 1,
pp. 78–85, 2008.

[23] N. Saxena and J. Voris, “We can remember it for you
wholesale: Implications of data remanence on the use of
RAM for true random number generation on RFID tags
(RFIDSec 2009),” http://arxiv.org/abs/0907.1256, July
2009.

[24] G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken,
H. de Groot, V. van der Leest, G.-J. Schrijen, M. van
Hulst, and P. Tuyls, “Evaluation of 90nm 6T-SRAM as
physical unclonable function for secure key generation in
wireless sensor nodes,” in Circuits and Systems (ISCAS),
2011 IEEE International Symposium on. IEEE, 2011,
pp. 567–570.

[25] D. E. Holcomb, A. Rahmati, M. Salajegheh, W. P.
Burleson, and K. Fu, “DRV-fingerprinting: Using data
retention voltage of SRAM cells for chip identification,”
in Radio Frequency Identification. Security and Privacy
Issues, ser. LNCS, J.-H. Hoepman and I. Verbauwhede,
Eds., vol. 7739. Springer, 2013, pp. 165–179.

[26] C.-H. Chen, K. Bowman, C. Augustine, Z. Zhang, and
J. Tschanz, “Minimum supply voltage for sequential logic
circuits in a 22nm technology,” in Low Power Electronics
and Design (ISLPED), 2013 IEEE International Sympo-
sium on, Sept 2013, pp. 181–186.

[27] Y. Oren, A.-R. Sadeghi, and C. Wachsmann, “On the
effectiveness of the remanence decay side-channel to clone
memory-based PUFs,” in Workshop on Cryptographic
Hardware and Embedded Systems (CHES), ser. LNCS.
Springer, 2013, vol. 8086, pp. 107–125. To appear.

[28] E. Biham and A. Shamir, “Differential fault analysis of
secret key cryptosystems,” in Advances in Cryptology
(CRYPTO), ser. LNCS, vol. 1294. Springer, 1997, pp.
513–525.

[29] D. Holcomb,W. Burleson, and K. Fu, “Initial SRAM state
as a fingerprint and source of true random numbers for
RFID tags,” in Workshop on RFID Security (RFIDSec),
July 2007.

[30] M. Bhargava, C. Cakir, and K. Mai, “Comparison of
bi-stable and delay-based physical unclonable functions
from measurements in 65nm bulk CMOS,” in Custom
Integrated Circuits Conference (CICC). IEEE, 2012, pp.
1–4.

[31] S. Katzenbeisser, U. Kocabaş, V. Rožić, A.-R. Sadeghi,

I. Verbauwhede, and C. Wachsmann, “PUFs: Myth, fact
or busted? A security evaluation of physically unclonable
functions (PUFs) cast in silicon,” in Cryptographic Hard-
ware and Embedded Systems (CHES), ser. LNCS, vol.
7428. Springer, 2012, pp. 283–301.

[32] S. Skorobogatov, “Low temperature data remanence
in static RAM,” http://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-536.pdf, Tech. Rep., June 2002.

[33] H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and
J. Rabaey, “SRAM leakage suppression by minimizing
standby supply voltage,” in International Symposium on
Quality Electronic Design (ISQED), vol. 0. IEEE, 2004,
pp. 55–60.

[34] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi,
and P. Tuyls, “Efficient helper data key extractor on
FPGAs,” in Cryptographic Hardware and Embedded Sys-
tems (CHES), ser. LNCS, vol. 5154. Berlin, Heidelberg:
Springer, July 2008, pp. 181–197.

[35] Calomel.org, “Aes-ni ssl performance study,” https://
calomel.org/aesni_ssl_performance.html, 2015.

[36] Intel, “Aes-ni performance enhancements: Hytrust
datacontrol case study,” https://software.intel.com/en-
us/articles/intel-aes-ni-performance-enhancements-
hytrust-datacontrol-case-study, 2015.

[37] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other
noisy data,” in Advances in Cryptology (EUROCRYPT),
ser. LNCS, vol. 3027. Springer, May 2004, pp. 523–540.

[38] Y. Oren, M. Renauld, F.-X. Standaert, and A. Wool,
“Algebraic Side-Channel attacks beyond the Hamming
weight leakage model,” in Cryptographic Hardware and
Embedded Systems (CHES), ser. LNCS, E. Prouff and
P. Schaumont, Eds., vol. 7428. Springer, 2012, pp. 140–
154.

[39] D. Karakoyunlu and B. Sunar, “Differential template
attacks on PUF enabled cryptographic devices,” in Work-
shop on Information Forensics and Security (WIFS).
IEEE, 2010, pp. 1–6.

[40] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, “Side-
channel analysis of PUFs and fuzzy extractors,” in Trust
and Trustworthy Computing (TRUST), ser. LNCS, vol.
6740. Springer, June 2011, pp. 33–47.

[41] A. Mahmoud, U. Rührmair, M. Majzoobi, and
F. Koushanfar, “Combined modeling and side
channel attacks on strong pufs,” Cryptology ePrint
Archive, Report 2013/632, 2013. [Online]. Available:
http://eprint.iacr.org/2013/632

[42] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Maj-
zoobi, F. Koushanfar, and W. Burleson, “Efficient power
and timing side channels for physical unclonable func-
tions,” in Cryptographic Hardware and Embedded Sys-
tems, vol. 8731. Springer Berlin Heidelberg, 2014, pp.
476–492.

[43] G. T. Becker and R. Kumar, “Active and passive side-
channel attacks on delay based puf designs,” http://
eprint.iacr.org/2014/287, 2014.

[44] J. Delvaux and I. Verbauwhede, “Fault injection modeling
attacks on 65 nm arbiter and ro sum pufs via environ-
mental changes,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 61, pp. 1701–1713, June 2014.

[45] R. Kumar and W. Burleson, “Hybrid modeling attacks on
current-based pufs,” in Computer Design (ICCD), 2014
32nd IEEE International Conference on, Oct. 2014, pp.
493–496.

[46] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit,
“Invasive PUF analysis,” in Fault Diagnosis and Tolerance
in Cryptography (FDTC), Aug. 2013, pp. 30–38.

[47] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert,
“Cloning physically unclonable functions,” in Hardware-
Oriented Security and Trust (HOST), June 2013, pp. 1–6.

14

http://arxiv.org/abs/0907.1256
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
https://calomel.org/aesni_ssl_performance.html
https://calomel.org/aesni_ssl_performance.html
https://software.intel.com/en-us/articles/intel-aes-ni-performance-enhancements-hytrust-datacontrol-case-study
https://software.intel.com/en-us/articles/intel-aes-ni-performance-enhancements-hytrust-datacontrol-case-study
https://software.intel.com/en-us/articles/intel-aes-ni-performance-enhancements-hytrust-datacontrol-case-study
http://eprint.iacr.org/2013/632
http://eprint.iacr.org/2014/287
http://eprint.iacr.org/2014/287

	I Introduction
	II Model and Preliminaries
	III Cloning Attack Using Remanence Decay
	IV Experimental Validation of the Attack
	V Effectiveness of the attack in practical settings
	VI Impact of Our Attack and Countermeasures
	VII Constructive Use of Remanence Decay
	VIII Related Work
	IX Conclusion
	References

