
A Low-Resource Public-Key Identification Scheme for RFID
Tags and Sensor Nodes

Yossef Oren
Computer and Network Security Lab

School of Electrical Engineering
Tel-Aviv University

P.O. Box 39040, Tel-Aviv 69978, Israel
yos@eng.tau.ac.il

Martin Feldhofer
Institute for Applied Information Processing and

Communications
Graz University of Technology

Inffeldgasse 16a
8010 Graz, Austria

Martin.Feldhofer@iaik.tugraz.at

ABSTRACT
We revisit a public key scheme presented by Shamir in [19]
(and simultaneously by Naccache in [15]) and examine its
applicability for general-purpose RFID tags in the supply
chain. Using a combination of new and established space-
saving methods, we present a full-fledged public key iden-
tification scheme, which is secure yet highly efficient. The
1024-bit scheme fits completely (including RAM) into 4682
gate equivalents and has a mean current consumption of
14.2 µA. The main novelty in our implementation is the re-
placement of the long pseudo-random sequence, originally
stored on 260 bytes of EEPROM in [19], by a reversible
stream cipher using less than 300 bits of RAM. We show
how our scheme offers tag-to-reader and reader-to-tag au-
thentication and how it can be fit into the existing RFID
supply chain infrastructure.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public Key Cryptosystems; B.7.7.1
[Integrated Systems]: Types and Design Styles—Algo-
rithms Implemented in Hardware

General Terms
Algorithms, Security

Keywords
Public-Key Encryption, Rabin Encryption, Hardware Im-
plementation, RFID Technology

1. INTRODUCTION
RFID tags will soon find their way into many items sur-

rounding us every day. RFID tags can essentially be viewed
as extremely cheap wireless computers bearing a unique
identifier and coupled to a physical item such as a banknote

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’09, March 16–18, 2009, Zurich, Switzerland.
Copyright 2009 ACM 978-1-60558-460-7/09/03 ...$5.00.

or a medicine container. Using the wireless medium, any
remote party can quickly and invisibly determine the set of
tagged items carried by a person. The detrimental effect of
this fact on the privacy and anonymity of consumers will
be staggering unless explicit technical measures are taken to
preserve them [18].

Recent results in hardware design of symmetric ciphers
indicate that the often-sought 5-cent tag may have strong
cryptographic abilities. For some applications symmetric
crypto will be suitable for protecting tags and their users
from abuse. However, it is impossible to neglect the system
risks involved in storing a symmetric key on a tag. If the
secret key stored on the tag is shared among many other
tags (as well as the RFID reader), the actual cost of the
tag grows from the 5-cent manufacturing cost to the multi-
million-dollar system cost of having the symmetric key re-
covered from a tag and then used to compromise the entire
RFID infrastructure consisting of many tags and readers.
This is especially the case in the supply chain environment
(EPC tags), where tags are created in very large quantities
by myriad untrusted parties and their use is relatively un-
controlled. The case for public-key cryptography in tags is
thus very strong – it can justifiably be argued that many
RFID systems will not use cryptography unless it is of the
public key variety. However, public key cryptography was
considered out of reach for general purpose tags due to its
high hardware cost.

This work shows how tag vendors can realize the advan-
tages of public key cryptography in the supply chain (both to
their users’ and their businesses’ advantage), while staying
within the tight power and area budgets of low-cost tags. We
show how a simple yet highly secure randomized public-key
scheme can be used to identify tags to readers while stor-
ing only the public key on the tag. The cost of compromise
in this case is minimized to the value of the tag’s payload,
which is generally much lower than the cost of compromising
the entire supply-chain system.

In contrast to other contemporary low-resource public key
schemes, our scheme can encrypt a relatively large amount of
arbitrary data in every transaction, a property that makes it
useful in wireless sensor nodes and other novel applications.

Our cryptographic scheme is called WIPR, short for Weiz-
mann-IAIK Public key for RFID. After simulating both tag
and reader algorithms in C++, we have implemented the tag
logic on a 0.35 µm standard-cell process technology and run
NanoSim power simulations on the extracted netlist. Based

59

on our results, we believe WIPR offers a new lower bound
on gate and power costs for viable public-key encryption.

The rest of this paper will be organized as follows. First,
we will present the RFID authentication landscape and sur-
vey related work. We will then present our scheme in theory
and in practice. We will conclude with discussion of some
tag-specific concerns and list future work and open issues.

1.1 The Supply-Chain RFID Environment
The RFID environment in general consists of a tag T and

a reader R, connected by a broadcast wireless medium. We
wish to focus our discussion on the identity-providing sce-
nario, found in supply chain environments. In this scenario
the tag bears a payload ID which it wishes to provide to the
reader in a privacy-preserving and properly authenticated
manner. A slightly different case is the identity-proving sce-
nario, in which the payload ID is a secret which is known
to the reader beforehand and the tag only wishes to prove
it knows ID as well.

Looking beyond the tag-reader association, there are sev-
eral additional parties in any RFID supply-chain environ-
ment whose goals must also be considered. First and fore-
most, the tag integrator, or supply chain owner, should be
considered. The tag integrator’s security and privacy goals
are the one we wish to realize, but some of these goals clash
with the immediate objectives of the reader itself (for exam-
ple, the tag integrator does not want a rogue reader to be
able to create counterfeit tags). Another significant party is
the tag manufacturer, whose role is to provide usable tags,
preferably with minimum communication or commitment to
the tag integrator. Understanding the various trust relation-
ships between the various parties is one of the crucial ele-
ments for a successful introduction of security-enabled tags,
perhaps even more than the hardware cost of the crypto-
graphic elements themselves. One major point to consider
with respect to this trust relationship is the associated logis-
tical issue of keying – that is, providing the relevant cryp-
tographic keys to the relevant parties, tracking the use of
these keys and allowing revocation when the keys fall into
undesirable use.

1.2 The RFID Adversarial Model
The adversary in the RFID environment can both pas-

sively observe reader and tag data exchange and actively
participate in the protocol as either side. The adversary’s
objective in the identity-providing scenario is either to de-
termine the value of ID without physically manipulating
the tag, or to counterfeit a tag, that is – successfully imper-
sonate a tag (bearing a certain desired ID or an arbitrary
randomly-chosen one) in a protocol exchange. The adver-
sary may be also interested in tracking a certain tag - that
is, correlating a set of protocol exchanges with a specific tag,
even it cannot explicitly determine this tag’s ID by observ-
ing the protocol. Finally, the adversary may wish to imper-
sonate a reader for the purpose or rewriting or disabling a
tag.

As opposed to smart cards, which are reasonably hard-
ened and designed to resist reverse engineering, RFID tags
are designed for cost and have only minimal hardware coun-
termeasures. Established results show that a tag essentially
has no secrets – be they private payloads, secret encryp-
tion keys or any other data – once it falls into the hands of
a moderately-funded adversary [16]. While the tag can be

perfectly impersonated in this case (neglecting for the mo-
ment physical authentication measures), it is important to
note the effect of such a compromise on the security of the
system as a whole.

The discussion in this article does not cover side-channel
attacks.

1.3 Related Work
Our scheme is based on the randomized variant of the

well-known Rabin cryptosystem [17], first discussed in [8].
This scheme’s applicability to low-resource smart cards was
explored in [15, 19]. In the low-resource smart card world,
as in the RFID world, RAM is expensive and its use needs
to be minimized. However, rewritable EEPROM is cheap
on smart cards and prohibitively expensive on RFID tags,
due to the high power cost of the write operation.

Low resource implementations of secret-key cryptosystems,
the most noteworthy of which is AES [3], have already been
demonstrated on physical chips. Low-resource public key
cryptosystems have yet to achieve this level of market readi-
ness. The Rabin cryptosystem was first implemented in a
low-resource setting by [7]. The low cryptographic security
and high hardware cost offered by the authors’ unmodified
Rabin implementation (512-bit encryption in 16 700 gates)
led them to declare that this cryptosystem is unsuitable for
RFID tags. Other public-key RFID contenders can be found
in works such as [5, 6]. These implementations generally re-
quire more gates than can fit in a low-cost 0.35 µm process
tag or rely on uncommon features such as very large random
sources. Of special note is the GPS scheme presented in [14].
While this scheme has a potentially low hardware cost, it
is by design a zero-knowledge identity-proving scheme and
cannot be used securely in an identity-providing setting.

2. THE PROTOCOL IN THEORY

2.1 A Brief Description of the Protocol
Recall that our motivation is to allow a tag to provide

the value of its payload ID to an authorized reader while
keeping this value secret from an adversary.

Our protocol is based on a variant of the well-known Ra-
bin cryptosystem [17], as presented in [19]. Briefly put, the
ciphertext M in such a cryptosystem is the square of the
plaintext P , modulo a composite number n = p · q (p and
q are prime). In this scheme every ciphertext has four cor-
responding plaintexts, requiring the addition of some inner
structure to the plaintext. The plaintext P is typically gen-
erated from a shorter string (in our case ID) by padding it
with random bits until it is the size of n.

The RAM efficient variant of the Rabin scheme does away
with the modular reduction step, replacing it with an addi-
tion of a random multiple of the divisor. Thus, instead of
M = P 2 (mod n) the tag transmits M = P 2 + r · n. This
replacement was shown in [15, 19] and more recently in [20]
to have no detrimental effect on security, as long as the size
of r is properly chosen ([15] suggests a value of |n|+ 80). It
does, however, do away with the remaindering operation and
drastically reduce the intermediate storage requirements of
the algorithm.

To make use of this cryptographic building block to pro-
vide secure identification, we use a challenge-response con-
struction, adding a reader-supplied random challenge to the
plaintext P .

60

The construction makes use of the function BYTE MIX,
a simple byte-interleaving operation meant to prevent both
tag and reader from dominating large consecutive segments
of P .

Setup: Tag is provided with public key n and a
signed unique identifier ID (see 2.3). Reader is pro-
vided with private key (p, q).

Boot: Reader generates a random bit string rr, where
|rr| = α. Tag generates two random bit strings rt,1 and
rt,2, where |rt,1| = |n| −α− |ID| and |rt,2| = |n|+ β. α
and β are security parameters.

Challenge: Reader sends rr to the tag.
Response: The tag generates a plaintext as follows:

P = BY TE MIX (rr#rt,1#ID)

, where # denotes concatenation, and then transmits
the following message:

M = P 2 + rt,2 · n

Verification: The reader uses the private key to de-
crypt M . There are 4 candidate decryptions (since every
quadratic residue modulo p·q has 4 square roots), so the
reader checks any of the 4 possible decryptions contains
the value of the challenge rr it sent to the reader. If
such a plaintext is found, it outputs the value of ID. In
all other cases, the authentication fails.

2.2 Security Benefits of the Proposed Scheme
The security benefits of the scheme are summarized in 1,

followed by a more detailed exposition below. The security
claims hold even if the adversary has complete knowledge of
the entire system other than the private key.

Note that most of these claims stem from the use of a ran-
domized encryption scheme based on public keys, as proven
in [8, 17].

2.2.1 Secrecy and privacy
Because WIPR is based on the well-established Rabin en-

cryption scheme, it provides powerful security and privacy
advantages to its users. More formally, the following security
properties hold:

• An adversary observing a protocol exchange cannot
learn anything about the ID of an unknown tag. This
property, which is shared with the underlying random-
ized Rabin cipher, allows the scheme to perform as a
combined identification-authentication scheme, as de-
scribed in the following subsection.

• An adversary cannot determine whether a tag it cur-
rently holds was a part of any past or future protocol
exchange it has recorded, even if the adversary knows
the secret payload ID of the tag. This property stems
from the fact that the adversary does not know the
values of rt,1 and rt,2 used in the recorded protocol ex-
changes. This property is very useful for articles such
as banknotes, where an unscrupulous merchant may
wish to track banknotes it has previously processed.

• The adversary cannot determine whether a certain pub-
lic key n was used in the protocol exchange. This

property shows its usefulness when there are multiple
batches of tags sharing the same air space, each with a
different public key. In such a case, merely discovering
that a certain tag belongs to a certain batch (for exam-
ple, medicine or high-denomination banknotes) poses a
security risk. This meta-privacy property stems from
the assumed intractability of the quadratic residuosity
problem [8], and is enabled by the fact that the range
of values for x2+r·n can be made the same for different
values of n by assigning to each key ni an appropriate
maximum value for ri such that ni · ri has the same
range for all public keys.

2.2.2 No private key stored on tag
The only secret data stored on the tag is its payload ID.

This means that if a single tag is reverse-engineered the sys-
tem as a whole is not compromised (a break once-run once
situation). More significantly, the tag integrator does not
need to provide the tag manufacturer with its private key,
drastically simplifying the keying logistics of the system.

2.2.3 Encrypts arbitrary data
While some low-resource public-key schemes are auth-

entication-only, WIPR essentially encrypts an arbitrary pay-
load with a length of up to nearly n bits. This allows WIPR
to be used not only for authentication and identification but
also for sensor measurements and other novel applications.

2.2.4 No tag rewrites or coupons
Several low-resource identification schemes ([18] and oth-

ers) rely on a secret which is shared by the tag and the reader
and is evolved using a hash function during the execution of
the scheme . There are two implementation challenges with
this approach: On the tag side, it requires memory to be
rewritten every time the protocol is executed, a relatively
slow and energy-consuming operation on EEPROM-based
tags; on the reader side, it requires that the reader’s back-
end database be updated after every authentication, man-
dating a high-bandwidth connection between the reader’s
back-end databases and all reader devices, a very problem-
atic issue for portable hand-held readers or distributed sup-
ply chain databases. The WIPR scheme is much simpler
and straightforward – during the execution of the proto-
col the data on the tag is not rewritten, and the reader
side algorithm makes no assumptions on the network con-
nectivity of the reader. Other schemes make use of precom-
puted coupons stored on the tag [14], allowing only a limited
amount of protocol executions (typically between 5 and 20)
before the coupons run out. WIPR, in contrast, can be used
indefinitely.

2.2.5 Implicit reader authentication
The fact that only a reader with access to the private key

can decipher data coming from the tag serves as an implicit
way of authenticating the reader. By making future traffic
between the tag and reader depend on the data supplied by
the tag, we can create a secure data channel from the reader
to the tag. To explain this property, note that after the pro-
tocol execution has finished, the reader holds the plaintext
values not only of ID but also of the random values rt,1

and rt,2. This fact allows the easy creation of a basic re-
turn channel from reader to tag using a one-time pad cipher
using some function of rt,1and rt,2 as the cover code. An im-
mediate application of this return channel is for secret key

61

Table 1: Summary of the security benefits of the scheme
Security Property Operational Benefit

Secrecy and privacy Tag’s identity cannot be recovered (even partial information such as brand) by
observing the protocol; tags cannot be tracked by correlating protocol exchanges

No private key stored on
tag

System is not compromised if tag is reverse-engineered; less trust required between
tag integrators and tag manufacturers

Encrypts arbitrary data Can be used for authentication, identification, sensor measurements and other novel
applications

No tag rewrites or coupons Reader side algorithm is straightforward and efficient; tag is not limited to a fixed
number of uses

Implicit reader
authentication

Creates a secure backwards channel for commands from tag to reader; allows
integration with secret-key encryption algorithms.

exchange – the reader can create a random secret key and
send it to the tag XOR’ed with rt,1, allowing further com-
munications over the faster secret key channel. This form
of cover coding can also be used to replace the cover coding
used for the EPC Gen2 kill command [9]1.

2.3 Why WIPR Provides Authentication
If we consider the fact that the cryptography on the tag

is provided by public key, the claim that WIPR can pro-
vide authentication seems counterintuitive. However, this
ability can be easily achieved by embedding some internal
cryptographic structure into ID. In essence, we use another
public-key mechanism to encode secret information into ID,
turning ID into the secret to be protected by the tag. Au-
thentication is now based on the fact that the tag proves
that it knows this secret identifier, while the cryptographic
primitives prevent an adversary from recovering this secret
by anything short of physical reverse-engineering of the tag.

To enable authentication the tag integrator (Walmart, for
instance) generates a private/public signing key pair. It
keeps the signing key secret and hands the verification key
to the reader. Next, it signs every ID with its private sign-
ing key and sends a sequence of such signed IDs to the tag
manufacturer. The tag’s payload ID, as sent to the reader,
is now the vector (ID′, SK(ID′)), where ID′ is the domain
specific payload (such as a serial number) and SK(ID′) is
a short public key signature of this payload. The reader,
who must now possess both the public verification key and
the private decryption key, can verify that a tag is valid but
cannot forge a new tag.

Let us observe why this setup provides authentication:

• Since WIPR is based on the Rabin encryption scheme,
which is considered very hard to crack, the only practi-
cal way to recover ID′or SK(ID′) would be to reverse-
engineer the tag or compromise a reader.

• If an adversary attempts to compromise the system
without breaking the underlying encryption algorithm
or gaining knowledge of the private decryption key,
his attempts are frustrated by the randomess used by
the scheme. An adversary may try to impersonate a
tag by recording challenge-response pairs used in suc-
cessful transactions and waiting for a reader challenge

1Care should be taken when using this return channel for
passing more predictable data, since it is easily malleable
and does not resist man-in-the-middle attacks. Specifically,
allowing the attacker to learn the exact value of rt,2 com-
pletely breaks the system.

to be repeated. This attack is foiled by the fact that
the reader issues a fresh random challenge in every
protocol execution, forcing the adversary to record an
impractically large number of transactions before the
same challenge is repeated. Another class of adver-
sary may try to track a certain tag (known to him
by a previously recorded challenge-response pair) by
masquerading as a reader and monitoring the tag’s re-
sponse to his recorded challenge. Since the tag uses
randomness in its response, this adversary (who, we
must note again, does not posess the private decryp-
tion key) would have to engage a tag in many transac-
tions with the same previously-encountered challenge
before the tag uses the same response twice.

• A reverse-engineered tag can obviously be counter-
feited, as discussed previously. However, in contrast to
most secret-key schemes, where reverse-engineering a
tag will allow an attacker to compromise the whole sys-
tem, the only piece of secret information stored in the
tag is SK (ID′), which can only be used in the context
of a single specific ID′. This construction will mean
that even an adversary who has physically probed the
tag to discover the full value of the vector ID cannot
forge a new tag with a different ID, since the adversary
is still without knowledge of the tag integrator’s pri-
vate signing key. This effectively creates a very desir-
able break once-run once situation for tags. Coun-
terfeited merchandise will now have to bear a limited
number of well-known IDs, which can be more easily
tracked and revoked.

• A compromised reader cannot be used to forge new
tags since it only has the verification key and not the
signing key – just as in the case of a reverse-engineered
tag, it can only be used to duplicate a previously-
encountered tag. To further protect against tag dupli-
cation, the system can be set up such that the tag in-
tegrator’s private decryption key is not stored directly
on the reader. Instead, the reader is either equipped
with a trusted hardware module such as a smart card
or set up to communicate with an online decryption
server. This trusted agent will receive the ciphertext,
decrypt it and verify the signature. It will then reveal
only ID′ and not SK (ID′) to the reader. This will al-
low identification and authentication while preventing
even a rogue reader from duplicating tags. Storing the
private keys on a smart card is also a good idea in gen-
eral – using smart cards will also simplify the security

62

logistics on the reader side, since smart-cards are typi-
cally much easier to protect, transport and insure than
cryptographically-enabled monolithic point-of-sale ter-
minals.

One remarkable aspect of this authentication system is
the low level of trust it requires among the various members
of the supply chain – the private signing key never leaves
the premises of the tag integrator, while neither the private
private signing key nor the private decryption key are ever
given to the tag manufacturer.

2.4 Reducing the Hardware Demands of the
Protocol

We now show how the original scheme presented in [19]
can be modified to be implementable on a very low resource
RFID tag. First, let us assign some meaningful values to the
security constants listed above. We choose n = 1024, α =
80, β = 80 to achieve an 80-bit security level, comparable
with 1024-bit RSA [12].

It is important to note at this point that our reference
implementation assumes the existence of two low gate count
cryptographic primitives: a true random-number generator
(RNG) and a one-way function. There are established re-
search results in both fields, as discussed further in 2.5.

The protocol is simple enough in terms of runtime – a
single online multiplication (P 2 + r · n) is all it takes. This
multiplication step can readily be performed on a multiply-
accumulate (MAC) register by convolution. Assuming a
word size of 8 bits, a single multiply-accumulate register
can carry out this multiplication in about 216 steps using 25
bits of carry memory (enough to accumulate 512 8-bit mul-
tiply operations). The ciphertext can be transmitted byte
by byte (LSB first) as soon as it is computed, minimizing
the need for intermediate registers.

The main problem with this scheme in terms of imple-
mentability is its high memory cost. To properly compute a
response the tag needs to store all 3 random strings rr, rt,1

and rt,2, consuming approximately 2·n bits of RAM at 6 gate
equivalents per bit. In [19] this problem was solved by using
a large amount of EEPROM, but EEPROM is not available
on tags. Furthermore, even if sufficient EEPROM storage
was available on the tag, the high power cost involved in
writing a large amount of data in every protocol exchange
will drastically reduce the usable range of the tag. Another
high-resource element is the public key, consuming n bits of
ROM at the price of approximately 1 gate equivalent per
bit.

We first address the public key storage problem. To re-
duce the ROM cost by half, we use a well known method
of generating a composite number with a predefined upper
half (see for example [10]). By setting the upper half to a
value easily represented in hardware (for example, the out-
put of a counter or simply a fixed binary value), we can trim
at least n/2 gate equivalents from the design. 2 Assuming

2Note that since the outputs of the key generation protocol
presented in [10] are generated at random, it is quite feasible
to run the protocol multiple times and hope to obtain a lower
half whose most significant bits match the fixed bit pattern
used in the upper half, thus saving another few gates of
ROM. Considering that a single non-optimized run of the
protocol took 2 seconds on a desktop computer, we can leave
the key generation program running for a week and gain an
expected savings of 18 additional bits.

2000 2500 3000 3500
0

10

20

30

40

50

60

70

80

90

Step

In
de

x

Tag memory accesses are sequential

R

t1
 (1)

R
t1

 (2)

R
t2

Figure 1: Tag memory accesses are sequential and
follow a zig-zag pattern.

1024-bit keys, for any fixed value of the upper 512 bits there
are more than 2500 possible composites, so this constraint
does not weaken security. In addition, currently known fac-
toring algorithms such as the number field sieve [11] do not
gain any computational advantage against keys bearing this
structure 3.

A more elaborate construction is used to reduce the RAM
costs of the scheme. To do so, we make use of the fact that
the three bit strings are completely random and that we only
require sequential access to them, as indicated in 1.

The combination of these two facts allows us to replace
the long random strings generated by the tag with pseudo-
random outputs from a reversible stream cipher. Instead of
storing the entire random string, we store short seed val-
ues (one for rt,2 and two for each end of rt,1), and use the
stream cipher operation to evolve them in time. Due to the
sequential nature of accesses to the random strings, only a
single “roll left” or “roll right” operation is required for each
convolution step.

There are several design alternatives for implementing re-
versible stream ciphers, for example linear-feedback shift
registers. We chose to implement the stream cipher using a
Feistel structure [13], a well-known cryptographic construct
used in symmetric ciphers such as DES and TEA. The se-
curity of a Feistel structure comes from a suitably strong
pseudo-random function, which is not necessarily invertible
or even domain preserving. As indicated in 2 below, we
can use a Feistel structure and an appropriate one-way func-
tion to evolve a random seed into an arbitrarily-long pseudo-
random sequence with quick and efficient sequential access,
using the following algorithm:

Roll Right:

left_in <= right_out;

right_in <= left_out xor oneway(right_out);

Roll Left:

right_in <= left_out;

left_in <= right_out xor oneway(left_out);

3A notable exception is the choice of “1000..00” as the upper
half of sequence. This choice should be avoided, since it
leads to composites of the form re ± s, with small r and
s. Composites of this form can be factored by the special
number field sieve.

63

One-way
Function

r[i] r[i+1] r[i+2]r[i-1]r[i-2]

Roll Right

State

r[i] r[i+1] r[i+2]r[i-1]r[i-2]

Roll Left

State

One-way
Function

Figure 2: Creating a reversible stream cipher using a
Feistel structure and an arbitrary one-way function.

Table 2: Summary of security parameters used in
the scheme.

Parameter Definition Reference
Value

n Public-key length 1024
α Reader challenge length 80
β Random multiple length

(when added to n)
80

δ Feistel state size 96

The advantages of this design choice are that it creates
many new pseudo-random bits per clock cycle and that there
are many inventive ways to build one-way functions using
constrained hardware, as discussed in the following subsec-
tion. We introduce a security parameter δ that indicates the
amount of state held by the Feistel and assume the one-way
function will have a domain of δ

2
. For our implementation

we chose δ = 96 bits (slightly longer than the 80-bit secu-
rity level used by the rest of the tag, since this seed is used
to generate long sequences which should not overlap). This
adds an implementation cost of 96 · 3 = 288 bits of RAM
and 96 · 2 = 192 random bits, as well as the one-way func-
tion and the associated multiplexing and routing logic. The
rolling step can be performed several times in a row to in-
crease the security of the cipher. Note that we do not use
the entire 96 bits of state as the output of the stream cipher,
instead selecting only 8 bits to match the word size of our
multiply-accumulate register.

We could find no way to reduce the storage requirements
for rr, which are 80 flip-flops in our case, other than reducing
the value of the security parameter α.

2.5 Choosing an Appropriate One-Way Func-
tion and Random Number Generator

Our reference implementation assumes the existence of
two low gate count cryptographic primitives: a true random-
number generator (TRNG) and a one-way function (OWF).
Our design uses a δ

2
-bit one-way function as part of the

Feistel structure. Our reference implementation, in which
δ
2

= 48, uses a somewhat insecure but computationally rep-
resentative boolean function, for which we allocated a total
of 690 gate equivalents out of the total 4682 used for the
scheme. This gate cost is consistent with the costs of sim-
ilar computational blocks in low-gate-count ciphers such as
PRESENT [2].

There are many inventive ways of implementing one-way
functions on constrained hardware, using ideas such as sub-
stitution-permutation networks, physically unique functions,
uninitialized memory and other techniques. The Feistel con-
struction used in the reference implementation is generic
enough to accept any sufficiently secure one-way function,
allowing new state of the art OWF constructions to be eas-
ily integrated into our scheme. Due to the fact that the
one-way function is only used by WIPR as the source of
a random sequence, different WIPR tags can use different
one-way functions while remaining compatible in all other
aspects. Indeed, it is even possible for a tag to use a different
randomly-generated one-way function for each invocation of
the protocol.

The most important requirement for the TRNG is that
it should be hard for an adversary to dictate the output
of the generator without physically manipulating the tag.
For example, a simple counter which starts incrementing
its value at a constant rate when the tag is powered up is
a bad candidate for such a generator, since an adversary
may be able to control the supply of wireless power to the
tag without physical contact. We note again that it has
been shown that once a sufficiently advanced adversary has
physical control of a tag, the tag can hold no secrets [16], so
the security of the TRNG under such conditions is a non-
issue.

3. HARDWARE IMPLEMENTATION OF
THE WIPR PUBLIC-KEY SCHEME

3.1 Requirements for Hardware Design of
Passive RFID Tags

Implementing cryptographic hardware for passive RFID
tags is challenging due to the fierce constraints. The main
objectives for the designed hardware are to minimize power
consumption and to reduce the necessary chip area. The
reason for the low-power constraint is the operating range.
The power that is provided by the RFID reader over the
air interface is reduced linearly with the operating distance
for UHF tags. In order to allow cryptographic operations
in the whole range of a “normal” tag, which is in the UHF
frequency range up to seven meters, the power budget of
approximately 20 µW must not exceeded. The second big
issue is the chip area. The costs of an RFID tag linearly
increase with the die size. Thus, the chip area of a crypto-
graphic hardware module significantly influences the price
of a tag. When an RFID tag today has a total chip area
of 20000 gate equivalents the size of additional hardware is
obviously very limited. However, the achieved gain of hav-

64

ing a cryptographically enhanced RFID tag must also be
considered.

3.2 Architecture of WIPR Scheme
During the course of our work we developed an architec-

ture for the WIPR scheme. The datapath of the imple-
mented module is depicted in 3. The main element of the
design is a multiply-accumulate unit. Thereby, a 25-bit ac-
cumulator register is used, which provides the possibilities
to reset the internal value and to shift eight positions to the
right. This option is used when a byte is sent to the reader
and when the next higher-order byte should be processed.
A 25-bit adder is implemented without special constraints.
It adds the newly processed multiplication result of the 8x8-
bit multiplier with the old value in the accumulator register.
The word size of 25 bits was chosen for the accumulator reg-
ister and the adder to not lose any necessary bits because of
too high values in the register.

The two inputs for the multiplier are selected by two four-
to-one multiplexers. The remaining parts of the circuit are
three Feistel states, memory for storing the challenge, a
ROM for the constant n, and inputs for further constants,
which are the ID of the tag and a control number. The so-
called Feistel states are used to store the random values rt,2

and rt,1. The implementation using this Feistel structure
allows getting the random values bytewise as needed for the
multiplication by the two simple operations “roll left” and
“roll right”. In addition to the module R t2, we need two
further Feistel states. The reason for duplicating the Feistel
state rt,1 in the modules R t1a and R t1b is that different
bytes or rt are required in the same multiplication cycle.
The datapath module R r contains the challenge from the
reader. It stores 16 times 8 bits of data, which are written to
the module during reception of the challenge. The 128x8-bit
ROM stores the modulus n. It is built from an unstructured
mass of standard cells, which are generated during synthesis.
The further inputs to the multiplexers are the tag identifier
ID and a checksum value labeled as CRC.

Calculation of a tag-identification response works as fol-
lows. The tag receives the challenge rr and stores it in the
R r module. Beginning at the least significant byte, the
message M = P 2 + rt,2 · n is computed using multiplication
by convolution. The variable P includes values from rr, rt,
ID, and the checksum. When the current byte is ready, it
is sent to the reader. Hence, the result does not have to be
stored in the tag. Furthermore, the accumulation register is
shifted eight positions to the right. This allows calculating
the next higher byte in the eight least significant positions of
the accumulator. The procedure is repeated until the most
significant byte is transmitted.

3.3 Results of WIPR Implementation
In order to have a fair comparison to other crypto schemes

for passive RFID tags, we implemented our design on a
0.35 µm standard-cell process technology from Austriami-
crosystems. The circuit has been synthesized and the ex-
tracted netlist after place and route has been simulated us-
ing the power simulation tool NanoSim from Synopsys. At
a supply voltage of 1.5V and a clock frequency of 100 kHz
the resulting mean current consumption is 14.2 µA. This is
below the available power budget in passive RFID tags.

The synthesis results for the modules in the datapath can
be seen in 3. About two thirds of the total chip area of

Table 3: Components and synthesis results for
WIPR datapath.

Chip area
[GEs]

R t2 Feistel state 547
R t1a Feistel state 547
R t1b Feistel state 547
Feistel logic + one-way function 1050
R r memory 995
Constant n 206
Multiplexers 68
Multiplier 424
Adder 100
Accumulator 198

Total chip area 4682GEs

Total power consumption 14.2 µA

4682GEs are consumed by the Feistel states and Feistel
logic. Also of importance is the memory for the challenge
rr. The multiply-accumulate unit (multiplier, adder, accu-
mulator) requires in sum only 722GEs.

The calculation of the whole identification procedure re-
quires 66 048 clock cycles. Due to the fact that each result
byte is transmitted to the reader, the longest computation
time is required for the byte computed exactly in the middle
of the whole value. This byte needs 512 cycles because two
times 256 partial products have to be summed up.

3.4 Comparison with Other Hardware Imple-
mentations

A comparison of different hardware implementations with
our design can been seen in Table 4. It should be noted that
all presented designs have been implemented on the same
target technology under equal simulation conditions. It can
be seen that the presented solution in this work requires
only a fourth of the hardware resources as the ECC-192 im-
plementation of Fürbass [6] while also reducing the mean
current consumption. An analysis of the best ECC imple-
mentations, in relation to our design, shows an improvement
of factor two in terms of chip area.

Compared to symmetric key cryptography our design re-
quires less chip area than the commonly used hash func-
tions SHA-256 and SHA-1 [4] but about 1500GEs more than
AES [3]. The required number of clock cycles is commonly
no big issue for passive RFID tags due to is slow data rates.
Nevertheless, an appropriate integration into currently used
standards is necessary.

4. DISCUSSION

4.1 Compatibility with the EPC C1G2 Air In-
terface

The EPC Class 1 Generation 2 (C1G2) specification is
an air interface commonly used in retail applications which
stand to benefit the most from the presented work. Ac-
cording to the C1G2 specification, tags respond to a request
from the reader by sending a single packet, sized about 128
bits, containing the tag’s entire payload [9]. As discussed
in the previous section, our protocol requires about 600 mil-
liseconds at 100KHz to create a 2048-bit response (twice the

65

F
S
M

 C
on

tr
o
ll
er

A
M

B
A

 I
n
te

rf
a
ce

25-bit
Accumulator

25-bit
Adder

8x8-bit
Multiplier

Mux Mux

Feistel
Rt1a

Feistel
Rt1b

Feistel
Rt2

128x8-bit
Const

16x8-bit
Rr

data in

data out

ID(i) CRC(i)

WIPR
Datapath

Feistel
Logic

Figure 3: Datapath architecture of WIPR.

Table 4: Comparison of different cryptographic hardware implementations.
Algorithm Security Imean Chip area Clock

[bits] [µA@100kHz] [GE] [cycles]

SHA-256 [4] 128 5.86 10 868 1128
SHA-1 [4] 80 3.93 8120 1274
AES-128 [3] 128 3.0 3400 1032
ECC-192 [6] 96 15.7 23 656 502 000
This work 80 14.2 4682 66 048

size of the public key). Considering the fact that the EPC
air interface reaches tag-to-reader data rates of 50Kbps un-
der reasonable conditions, this seems a wasteful use of the
wireless medium. This problem can be addressed by making
a relatively simple adaptation to the EPC C1G2 singulation
protocol.

Our idea in general is similar to the one described in [3], in
which several tags send an interleaved response to the reader
simultaneously. We make use of the additional fact that
C1G2 are especially suited to work in a “slotted ALOHA”
fashion, already having selected slots as part of the ordained
response to the “Query” command.

To support this function, we propose a new reader-to-tag
command called “AckRep”. Similar to the “Ack” command,
this command receives the tag’s session-specific random han-
dle. As a response to this command, the tag sends as many
ciphertext bytes as it has prepared, LSB first. In contrast
to the standard “Ack” command, the tag does not go idle af-
ter this command. Instead, it immediately starts preparing
more ciphertext bytes to send. Another required command
is “Challenge”, in which the reader presents rr to a selected
tag. Note that all WIPR tags should respond to the stan-
dard C1G2 query command with an identical value (up to
meta data such as version number), since using a unique
PC+EPC value for each tag will obviously invalidate the
privacy benefits of our scheme.

Figure 4 shows a modified EPC inventory process. To in-
ventory WIPR tags, a reader should first perform the stan-

dard C1G2 population query operation, as described in [9].
After the reader obtains the session handles of all present
tags, it should issue “Challenge” commands to all WIPR
tags, then repeatedly call “AckRep” in a round-robin fashion
until all present tags have sent their entire encrypted pay-
loads. The exact amount of bytes which should be buffered
by the tag and transmitted in a single protocol round-trip is
an implementation decision – storing more bytes allows more
efficient use of the air medium but comes with an added gate
cost on the tag. The order in which tags are queried with
this command can be chosen by the reader based on the
order in which the tags replied to the “Query” command.

To allow current-generation readers to immediately sup-
port WIPR without updating their firmware, the challenge
and response commands can also be implemented as mem-
ory-mapped I/O requests to predefined addresses on the tag
(essentially a simplified version of the approach suggested
in [1]). Thus, performing a memory write operation to a
predefined address will be understood by the tag as the
“Challenge” command, while a memory read operation from
another address will be understood by the tag as the “Ack-
Rep” command.

This method allows multiple tags to interleave their re-
sponses, allowing more efficient use of the air medium. It
also prevents the tags from having to buffer their output
data indefinitely in RAM registers.

One drawback to this solution is that it forces the reader
to announce with high power that it is communicating with

66

Interrogator Tag

Query

RN16

ACK(RN16)

[WIPR Version 1]

Challenge(RN16)

Handle

ACKRep(Handle)

[Ciphertext bytes]

ACKRep(Handle)

[Ciphertext bytes]

Figure 4: Introducing WIPR tags into the EPC
C1G2 air interface

a WIPR tag, potentially teaching an adversary that the cur-
rently inventoried item has more value than one whose ven-
dor chose not to implement our scheme. The authors hope
that use of WIPR will be widespread enough to make this
risk trivial.

4.2 Relation to the SQUASH Hashing Scheme
There are several architectural similarities between WIPR

and the SQUASH hashing scheme presented in [20]: both
rely on the security of modular squaring, both make use of
a multiply-accumulate register and both use long pseudo-
random sequences generated from a short seed. However,
there is a significant difference in the purpose of the two
schemes. Referring to the notation of 1.1, SQUASH, being
a hashing scheme, offers an identity-proving mechanism
(for tags whose ID is known beforehand to the reader), while
WIPR, being an encryption scheme, offers an identity-
providing mechanism for previously unknown tags. It is im-
portant to note that many of the WIPR’s security claims,
as listed in 1, do not hold for SQUASH. SQUASH is thus
suitable for applications such as vehicle entry systems, in
which the set of expected tags is small and predetermined,
while WIPR is suitable for applications such as inventory
management, in which the tag population is very large and
potentially uncontrolled by the reader.

At the present time SQUASH has no published imple-
mentation on an ASIC-like architecture, making it difficult
to perform a direct comparison of the gate cost and perfor-
mance of the two schemes. It can be still noted that due
to their similar architectures, SQUASH can be implemented
with near trivial gate cost on a chip which already includes
the WIPR hardware components.

4.3 Open Issues
The article did not compare the relative merits of differ-

ent designs of one-way functions. We did not discuss low-
resource methods of obtaining the prescribed amount of ran-
dom bits. The parameter sizes used in the scheme need to be
fine-tuned, based on the relative strengths of attacks against
the scheme’s various subcomponents.

It will also be interesting to find a standalone key agree-
ment protocol suitable for tags. Using secret key encryption
and a good key agreement protocol will achieve many of
the security goals presented here while still relying only on
secret-key cryptography.

4.4 Conclusion
We presented a public key identification scheme which is

highly secure yet lightweight enough to fit on an RFID tag
or a wireless sensor node. We also showed how to elegantly
introduce this scheme into the current EPC air interface
specification. The introduction of public key-based methods
to the supply chain will offer significant security and privacy
advantages both to users and to businesses.

5. ACKNOWLEDGEMENTS
We wish to thank Adi Shamir for his substantial contri-

bution to this work.
The research described in this paper has also been sup-

ported, in part, by the European Commission through the
IST Programme under contract FP6-2005-IST-034921 C@R.
The information in this document reflects only the authors’
views, is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.

6. REFERENCES
[1] D. V. Bailey and A. Juels. Shoehorning security into

the EPC tag standard. In R. D. Prisco and M. Yung,
editors, Security and Cryptography for Networks, 5th
International Conference, SCN 2006, LNCS, volume
4116, pages 303–320. Springer-Verlag GmbH,
September 2006. http://snurl.com/wiprBJ.

[2] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. B. Robshaw, Y. Seurin, and
C. Vikkelsoe. PRESENT: An ultra-lightweight block
cipher. In P. Paillier and I. Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems -
CHES 2007: 9th International Workshop, LNCS,
volume 4727, pages 450–466. Springer-Verlag GmbH,
2007. http://snurl.com/wiprBKLPPRSV.

[3] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer.
Strong authentication for RFID systems using the
AES algorithm. In J.-J. Q. Marc Joye, editor,
Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop, LNCS,
volume 3156, pages 357–370. Springer-Verlag GmbH,
July 2004. http://snurl.com/wiprDFW.

[4] M. Feldhofer and C. Rechberger. A Case Against
Currently Used Hash Functions in RFID Protocols. In
First International OTM Workshop on Information
Security (IS’06), Montpellier, France, Oct 30 - Nov 1,
2006. Proceedings, Part I, LNCS, volume 4277, pages
372–381, Graz, Austria, October 2006.
http://snurl.com/wiprFR.

67

http://snurl.com/wiprBJ
http://snurl.com/wiprBKLPPRSV
http://snurl.com/wiprDFW
http://snurl.com/wiprFR

[5] M. Finiasz and S. Vaudenay. When stream cipher
analysis meets public-key cryptography. In E. Biham
and A. M.Youssef, editors, Selected Areas in
Cryptography - 13th International Workshop, SAC
2006, LNCS, volume 4356, pages 266–284.
Springer-Verlag GmbH, September 2007.
http://snurl.com/wiprFV.

[6] J. Furbass, F.; Wolkerstorfer. ECC Processor with
Low Die Size for RFID Applications. IEEE
International Symposium on Circuits and Systems,
2007, pages 1835–1838, 27-30 May 2007.
http://snurl.com/wiprFW.

[7] G. Gaubatz, J.-P. Kaps, E. Ozturk, and B. Sunar.
State of the art in ultra-low power public key
cryptography for wireless sensor networks. In Third
IEEE International Conference on Pervasive
Computing and Communications Workshops, pages
146–150, March 2005. http://snurl.com/wiprGKOS.

[8] S. Goldwasser and S. Micali. Probabilistic encryption
& how to play mental poker keeping secret all partial
information. In STOC ’82: Proceedings of the
fourteenth annual ACM symposium on Theory of
Computing, pages 365–377, New York, NY, USA,
1982. ACM. http://snurl.com/wiprGM.

[9] E. Inc. EPC radio-frequency identity protocols class-1
generation-2 UHF RFID protocol for communications
at 860 MHz – 960 MHz, version 1.0.9. Online,
September 2005. http://snurl.com/wiprEPC.

[10] A. M. Johnston. Digitally watermarking RSA moduli.
Cryptology ePrint Archive, Report 2001/013.
http://snurl.com/wiprJ.

[11] A. K. Lenstra, J. H. W. Lenstra, M. S. Manasse, and
J. M. Pollard. The number field sieve. In STOC ’90:
Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 564–572,
New York, NY, USA, 1990. ACM.
http://snurl.com/wiprLLMP.

[12] A. K. Lenstra and E. R. Verheul. Selecting
cryptographic key sizes. Journal of Cryptology: the
journal of the International Association for
Cryptologic Research, 14(4):255–293, 2001.
http://snurl.com/wiprLV.

[13] M. Luby and C. Rackoff. How to construct
pseudorandom permutations from pseudorandom
functions. SIAM Journal on Computing,
17(2):373–386, 1988. http://snurl.com/wiprLR.

[14] M. McLoone and M. Robshaw. Public key
cryptography and RFID tags. In M. Abe, editor,
Topics in Cryptology – The Cryptographers’ Track at
the RSA Conference 2007, LNCS, volume 4337, pages
372–384. Springer-Verlag GmbH, February 2007.
http://snurl.com/wiprMcLR.

[15] D. Naccache. Method, sender apparatus and receiver
apparatus for modulo operation. European patent
application no. 91402958.2, Filed 10/27/1992.
http://snurl.com/wiprN.

[16] K. Nohl and H. Plötz. MIFARE – little security,
despite obscurity. Technical report, 24th Chaos
Communication Congress, December 2007.
http://snurl.com/wiprNP.

[17] M. Rabin. Digitalized signatures and public-key
functions as intractable as factorization. Technical
report, MIT, Cambridge, MA, USA, 1979.
http://snurl.com/wiprR.

[18] S. E. Sarma, S. A. Weis, and D. W. Engels. Security
and privacy aspects of low-cost radio frequency
identification systems. In First International
Conference on Security in Pervasive Computing, 2003.
http://snurl.com/wiprSWE.

[19] A. Shamir. Memory efficient variants of public-key
schemes for smart card applications. In A. D. Santis,
editor, Advances in Cryptology – EUROCRYPT ’94,
LNCS, volume 950, page 445. Springer-Verlag GmbH,
January 1995. http://snurl.com/wiprS.

[20] A. Shamir. SQUASH – a new MAC with provable
security properties for highly constrained devices such
as RFID tags. In A. Biryukov, editor, Fast Software
Encryption, 15th International Workshop, FSE 2008,
Lecture Notes in Computer Science. Springer-Verlag
GmbH, To Appear.

68

http://snurl.com/wiprFV
http://snurl.com/wiprFW
http://snurl.com/wiprGKOS
http://snurl.com/wiprGM
http://snurl.com/wiprEPC
http://snurl.com/wiprJ
http://snurl.com/wiprLLMP
http://snurl.com/wiprLV
http://snurl.com/wiprLR
http://snurl.com/wiprMcLR
http://snurl.com/wiprN
http://snurl.com/wiprNP
http://snurl.com/wiprR
http://snurl.com/wiprSWE
http://snurl.com/wiprS

	Introduction
	The Supply-Chain RFID Environment
	The RFID Adversarial Model
	Related Work

	The Protocol in Theory
	A Brief Description of the Protocol
	Security Benefits of the Proposed Scheme
	Secrecy and privacy
	No private key stored on tag
	Encrypts arbitrary data
	No tag rewrites or coupons
	Implicit reader authentication

	Why WIPR Provides Authentication
	Reducing the Hardware Demands of the Protocol
	Choosing an Appropriate One-Way Function and Random Number Generator

	Hardware Implementation of the WIPR Public-Key Scheme
	Requirements for Hardware Design of Passive RFID Tags
	Architecture of WIPR Scheme
	Results of WIPR Implementation
	Comparison with Other Hardware Implementations

	Discussion
	Compatibility with the EPC C1G2 Air Interface
	Relation to the SQUASH Hashing Scheme
	Open Issues
	Conclusion

	Acknowledgements
	References

