
Toward Practical Public Key Anti-Counterfeiting for
Low-Cost EPC Tags
Alex Arbit, Yossef Oren and Avishai Wool

Computer and Network Security Lab, School of Electrical Engineering
Tel-Aviv University, Ramat Aviv 69978, Israel
Email: {alexand5|yos|yash}@eng.tau.ac.il

Abstract—In this work we report on a practical
design, and a working prototype implementation, of
a public-key anti-counterfeiting system based on the
Electronic Product Code (EPC) standard for supply
chain RFID tags. The use of public-key cryptography
simplifies deployment, reduces trust issues between
the tag integrator and tag manufacturer, eliminates
the need for on-line checks by a central authority,
and protects user privacy. Contrary to earlier claims
of impracticality, we demonstrate that EPC tags are
capable of performing full-strength public-key encryp-
tion. The crucial element in our system is WIPR,
a recently-proposed variant of the well known Rabin
encryption scheme, that enjoys a remarkably low re-
source footprint (less than 4700 gate equivalents for a
complete ASIC implementation) – for a full-strength
1024-bit encryption. Our prototype system consists of
an ultra-high frequency (UHF) tag running custom
firmware, which communicates with a standard off-the-
shelf reader. No modifications were made to the reader
or the air interface, proving that high-security anti-
counterfeiting tags and standard EPC tags can coexist
and share the same infrastructure. Surprisingly, we
identify that the time bottleneck is not the tag’s com-
putation time: the delay is dominated by inefficiencies
in the way the reader implements the EPC standard.
The insights from our performance measurements let
us identify how a few simple changes to the reader can
drastically improve the system throughput.
Keywords: Anti-counterfeiting, security, EPC

I. Motivation
Counterfeiting is one of the major problems of modern

commerce. According to a 2008 OECD study[11], the
market value of counterfeit goods sold every year amounts
to over 600 billion dollars, or 5%-7% of total world trade.
The introduction of electronic RFID tagging to various
goods, from medicines to banknotes, offers a chance to
defeat counterfeiting by attaching a verifiable unique ID
to high-value goods. As noted in [22], the EPC network
is a natural match to anti-counterfeiting efforts since it
provides each tagged item with a unique ID and has
infrastructure in place to track and trace any tag as it
travels through the supply chain.

Each individual tag in the current generation of Elec-
tronic Product Code (EPC) tags has an unencrypted
unique tag identifier (TID) which can be sent to readers as

Supported in part by a grant from Check Point.

after performing an ordinary inventory request. As noted
in [14], there are two main approaches to using this TID as
an anti-counterfeiting measure. The first approach is the
“track and trace”, or e-pedigree approach. In this approach
the tag’s location is phyically tracked and updated in some
central server every time it is accessed by a reader. A
counterfeited tag will exhibit an unusual and detectable
usage pattern, such as being present in two different
countries at the same time. Sophisticated software running
on a central server and monitoring all tags worldwide can
then detect these anomalies and prevent counterfeiting.
The main disadvantage of this approach is its significant
communications and infrastructure overhead which stems
from the fact that the readers must constantly communi-
cate with an online central server. As noted in [22], even if
only a single uncooperative party in the supply chain does
not properly update the central server the entire system
quickly loses its effectiveness. Another problem of the
trace-and-trace approach is the complete loss of privacy
for individuals carrying the tagged items, who will now be
tracked centrally together with the items they carry. This
loss of privacy is problematic (and sometimes illegal) when
dealing with items such as banknotes or medicine.

The second approach to RFID-based anti-counterfeiting
is based on cryptography. In this approach each tag has,
in addition to its TID, a certain additional “secret value”,
or payload, which is disclosed to the reader as proof of
its authenticity. This payload is not sent in the clear over
the air, since adversaries may clone the tag by observing
over-the-air protocol exchanges. Instead, some form of
encrypted communications is used to present the payload
to the reader, which then verifies it using cryptography.
By applying a public-key signature to this payload we
can prevent an adversary who knows one tag’s payload
(obtained, for instance, by reverse engineering one tag)
from creating a different valid payload. The fact that
the tag can prove its own identity without relying on a
central server to verify it allows a more flexible use of
offline and semi-offline readers. Additionally, the privacy
of tag-bearing individuals can be preserved by limiting
the amount of information disclosed by the unencrypted
element of the protocol exchange and keeping all sensitive
information as part of the encrypted payload.

Methods of anti-counterfeiting based on cryptography

are further divided by the choice of either symmetric
(also known as secret key) or asymmetric (also known as
public key) cryptography to secure the communications
between tag and reader. In symmetric cryptography the
same cryptographic key exists both on the reader an on the
tag. This key allows both encryption and decryption of the
secret payload. In contrast, asymmetric ciphers allow a less
sensitive public key (which can only encrypt but cannot
decrypt other messages) to be stored on the tag, while
the high-security private key (which can both encrypt
and decrypt) is only stored at the reader side. Recent
results in hardware design of symmetric ciphers indicate
that cheap 5-cent tags may be powerful enough to support
strong symmetric cryptography, but any secret-key-based
system’s security breaks down completely if the key is
recovered from even a single tag. This is an acute problem
in the supply chain environment, where tags are created
in very large quantities by myriad untrusted parties and
their use is relatively uncontrolled. In fact, several test im-
plementations of secret-key-based anti-counterfeiting use a
different secret key for each individual tag. Since it is very
difficult to distribute all keys in advance to all readers,
the key database must be stored on a secure central
server which must be online at all times, incurring an
even higher communications overhead when compared to
the track-and-trace approach[14]. The case for public-key
cryptography in EPC tags is thus very strong. However,
public key cryptography was considered out of reach for
general purpose tags due to its high hardware cost [1], [9].

A problem common to any cryptographic-based ap-
proach is the fact that it will have to be compatible to some
extent with the EPC C1G2 specification[5]. In contrast
to the track-and-trace approach, which appears over the
air to be essentially identical to any other tag inventory
command, a cryptographic anti-counterfeiting protocol
will involve the additional protocol step of sending the
payload and verifying it. Since the C1G2 specification does
not specifically include an anti-counterfeiting protocol, it
was unclear how the existing infrastructure will be able to
support such a system[3].

In our work we set out to deliver a working implementa-
tion of public key-based anti-counterfeiting for EPC tags.
First, we selected a public-key scheme which could offer
suitable security properties while still staying within the
stringent hardware requirements of low cost EPC tags.
Next, we investigated the systems engineering challenges
– the new scheme must be applied within an open system,
consisting of mutually distrustful parties with conflicting
interests, and it must integrate with the existing standards
and infrastructure of tags, readers and backend systems.
Finally, we implemented the scheme and measured its
performance on real EPC equipment. We believe our
system addresses all challenges and is usable with the
current generation of hardware and standards.

The fundamental elements of the RFID environment
in general are the tag and the reader, connected by

a broadcast wireless medium. As mentioned previously,
the tag bears a secret ID, or payload, which it wishes
to provide to the reader in a secure manner. Looking
beyond the tag-reader association, there are several ad-
ditional parties in any RFID supply-chain environment
whose goals must also be considered. The tag integrator,
or supply chain owner, is the party whose security and
privacy goals must be realized, but some of these goals
clash with the immediate objectives of the reader itself
(for example, a rogue reader would like to be able to
create counterfeit tags, but the tag integrator does not
want this to happen). Another significant party is the
tag manufacturer, whose role is to provide usable tags,
preferably with minimum communication or commitment
to the tag integrator. These two parties have limited trust
in each other. In particular, cryptographic keying creates a
hurdle – providing the relevant cryptographic keys to the
relevant parties, tracking the use of these keys and allowing
revocation when the keys fall into undesirable use.

Established results show that a tag essentially has no
secrets once it falls into the hands of a moderately-funded
adversary[18]. While a physically captured tag can be
perfectly cloned, we wish to limit the effect of such a
compromise on the security of the system as a whole. In
particular, if the tag carries no secret keys, and its ID
is cryptographically signed, then the adversary can only
clone the captured tag – but cannot counterfeit other tags.

A. Our Contribution
In this work we present a working implementation

of a supply-chain system which includes a public key-
based anti-counterfeiting function while staying compliant
with the EPC C1G2 standard and supporting off-the-shelf
RFID readers. Our solution addresses both the crypto-
graphic aspects and the systems engineering aspects of
the anti-counterfeiting system. The cryptographic scheme
we selected is WIPR, an ultra-low-power public key cryp-
tosystem developed by Oren and Feldhofer[19], which
realizes strong 1024-bit Rabin encryption with a minimal
hardware footprint of 4700 gate equivalents for a complete
ASIC implementation. Other than a security module that
implements the anti-counterfeiting function, the reader
side is identical to a standard non-authenticated RFID
system. Specifically, the reader hardware we used was not
modified in any way and the over-the-air communication
used only mandatory commands from the EPC C1G2
command set[5]. The use of public-key cryptography, as
opposed to secret-key cryptography, makes the system to
much simpler to deploy since it can operate without a
constant online connection to a central server.

The rest of the document will be arranged as follows:
first, we survey related work in the field. Section II
discusses the operational advantages of using public-key
cryptography for anti-counterfeiting. Sections III and IV
describe our system and the results of our implementation.
Section V concludes with some open issues and directions

for future research.

B. Related Work

The suitability of the EPC network for anti-
counterfeiting was first explored in [22] and [12]. These
works suggested adding a central anti-counterfeiting
server to the EPC network and did not explicitly cover
the use of encryption.

Much additional work was performed under the Eu-
ropean BRIDGE project[1]. The BRIDGE project eval-
uated several approaches to providing RFID-based anti-
counterfeiting, both based on cryptography and on a cen-
tralised tracking approach[14]. One of the striking conclu-
sions of the work performed by this project was that cryp-
tography, and specifically secret-key cryptography, was
less cost effective for tags than using plaintext tags which
are tracked and traced as they move between readers. The
main reason cited in [14] for this result was the heavy
server-side burden of storing and managing many secret
keys, causing a computational load estimated to be ten
times as much as the already formidable load caused by
conventional track-and-trace. In this work we challenge
some of their conclusions, by showing that public-key
cryptography is quite feasible and that it requires minimal
central computing power.

Low resource implementations of secret-key cryptosys-
tems, the most noteworthy of which is AES [6], have al-
ready been demonstrated on physical chips. Low-resource
public key cryptosystems have yet to achieve this level
of market readiness. The Rabin cryptosystem was first
implemented in a low-resource setting by [9]. The low
cryptographic security and high hardware cost offered by
the authors’ unmodified Rabin implementation (512-bit
encryption in 16,700 gates) led them to declare that this
cryptosystem is unsuitable for RFID tags, a belief that was
echoed by many other subsequent works. Other public-
key RFID contenders can be found in works such as [7],
[8]. These implementations generally require more gates
than can fit in a low-cost 0.35µm process tag or rely on
uncommon features such as very large random sources. Of
special note is the Crypto-GPS scheme presented in [16].
While this scheme has a potentially low hardware cost,
it is by design a zero-knowledge identity-proving scheme
and cannot be used securely in an encryption setting.
Another survey of public-key schemes based on elliptic-
curve cryptography can be found in [13].

The public key scheme we use in this work is WIPR,
which is described in [19]. WIPR is based on a randomized
variant of the well-known Rabin cryptosystem[20], first
discussed in [10]. It is well suited for our solution because
it has one of the smallest hardware footprints and largest
payload capacities of all published high-security public-
key schemes. This scheme’s applicability to low-resource
smartcards was first explored in [17], [21]. The properties
of this cipher are presented in Table I.

Cipher Strength 1024 bits
Challenge size 80 bits
Response size 2208 bits

Payload capacity 864 bits
Area 4682 GEs

Total power consumption 14.2µA

Table I
Properties of the ASIC implementation of the WIPR

cipher[19]

Figure 1. A general cryptographic anti-counterfeiting protocol

There are several additional tag-to-reader authentica-
tion protocols presented in other works, based on bitwise
operations, pseudo-random numbers, hash-functions and
physically unclonable functions (PUFs). For a survey cov-
ering these protocols, please refer to [15].

II. The Advantages of Public-Key for RFID
Anti-Counterfeiting

The general structure of a cryptographic anti-
counterfeiting scheme based on a challenge-response
protocol is illustrated in Figure 1. As shown in the figure,
each tag contains a secret payload (most commonly a
cryptographically signed version of the TID with some
additional sensitive information) and a cryptographic key
it uses to communicate with the reader. To begin the
protocol the reader sends the tag a random challenge,
which need not be encrypted. The tag then constructs a
message consisting of this challenge, internally generated
random bits and its TID and encrypts this message
under the cryptographic key. Finally, the tag sends the
encrypted message to the reader. The reader then verifies
that the response contains the challenge it had originally
sent and that the secret payload is valid.

It is important to note that this protocol is used both
for symmetric and assymetric cryptographic schemes. The
only difference lies in the choice of keys delivered to
the participating parties – in a symmetric scheme both
sides receive the same key and can both encrypt and
decrypt messages. In contrast, in an assymetric scheme
tags can only encrypt messages, but readers can both
decrypt messages and validate signatures. This is an im-
portant distinction since tags are relatively easy to reverse-

Figure 2. A logistic view of the suggested public-key based anti-counterfeiting system. Private keys (signing and decryption) are underlined.

engineer[18]. This means that an adversary needs only
to attack a single symmetric-key tag to compromise the
system. To protect against this fact, symmetric-key anti-
counterfeiting schemes typically distribute many secret
keys, some going as far as specifying a unique secret key
for every tag. This added data requirement causes a heavy
logistical burden on the system, which was estimated in
[14] to be ten times as heavy as a complete track-and-trace
protocol. In contrast, a public key-based system remains
secure even if the adversary has complete knowledge of
the entire system other than the private key. Since tags
do not require decryption capabilities, they never store a
private key: the private keys are only kept on the more
secure readers. This fact lets the reader operate without a
constant online link to a central server.

The WIPR scheme is a straightforward implementation
of the challenge-response protocol presented earlier. In
contrast to other low-resource authentication schemes,
during the execution of the protocol the data on the tag
is not rewritten, and the tag can be used for an unlimited
amount of times. For a detailed description of the WIPR
scheme, please refer to [19].

In some cases it is desirable to prevent the exact identity
of tags from being determined by unauthorized readers.
In other cases, merely discovering that a certain tag
belongs to a certain batch (for example, medicine or high-
denomination banknotes) poses a security risk. Our public-
key scheme can enable both of these properties if the tag’s
public EPC value is set to a fixed or semi-random value
which cannot identify the tag indepdently, while the real
EPC is made part of the secret payload.

A logistic view of the suggested public-key based anti-
counterfeiting system is described in Figure 2. The figure
represents the various members of a simple tag-equipped
supply chain – the tag manufacturer, which produces
and deploys many tags for a multitude of clients, the
tag integrator, which wishes to use anti-counterfeiting
technology but does not manufacture them itself, and
finally the reader, which performs the actual authentica-
tion process. The tag integrator creates two pairs of public-
private keys: a private signing key together with its
public verification key, and a private decryption key

together with its public encryption key. The signing
key never leaves the premises of the integrator. Instead,
the integrator generates a long list of signed TIDs and
sends them to the manufacturer together with the public
encryption key. Without the private signing key the tag
manufacturer is unable to create arbitrary signed TIDs,
a fact which reduces the amount of trust and liability re-
quired in the system. The tag manufacturer then generates
a multitude of tags, each with the public encryption key
and with an individual signed TID from the list. The use
of public key cryptography guarantees that an adversary
gains no private information from reverse engineering an
individual tag other than the tag’s TID.

The reader receives the private decryption key and the
public verification key from the tag integrator, but not
the private signing key. Thus, it is able to securely verify
the identity of tags but is unable to forge new ones.
Significantly, once these two keys are delivered to the
reader (probably in the form of a secure module such as a
smart card), the system can operate completely offline and
does not require constant communication with a server.

III. Lab Setup

The system we built consists of an EPC C1G2-compliant
RFID tag, an EPC C1G2-compliant RFID reader, and two
PC workstations.

The system setup is presented in Figure 3. Our system
used the UHF Demotag, a hardware prototyping platform
developed by IAIK TU Graz. As stated in [2], the tag
is battery-powered, but behaves like a fully-passive tag
in the reader field. It is fully compatible to ISO 18000-
6c and EPC Class1 Generation2 standards. The tag is
optimized for easy adaptability to allow easy and fast
development of prototypes. It features a ATMega128 mi-
crocontroller with JTAG and ISP interface for program-
ming. An RS232 interface is available for configuration
and logging. The front-end consists of discrete devices on
a PCB, with a PCB antenna that is tuned to 868MHz.
The tag is connected via a serial RS232 communication
link to a Linux workstation running the CrossStudio
for AVR embedded development environment by Rowley
Associates, version 1.4. The firmware executes on power-

Figure 3. System setup

on from Atmega128 on-chip Flash memory. The CAEN
RFID DK828EU reader is used as the tag’s interrogator. It
features an controller module with embedded EPC C1G2
reader firmware which is controlled via USB link by a Win-
dows workstation running Matlab. The DK828EU reader
conforms with European ETSI power requirements[4]. In
our lab tests we found this reader has an average read
rate of approximately 15kbps, a fact which dominated the
overall performance of our system. The IAIK SCA Toolkit
provides the connection between the reader’s software
libraries and Matlab. Finally, an RFID wireless link is
established between the demotag and the reader.

Figure 4 demonstrates the full WIPR Protocol flow
through EPC C1G2 air interface using standard EPC
protocol commands. The reader first sends the standard
INVENTORY command. WIPR tags do not respond to
this command with the full EPC, which may be sensitive
and should not be disclosed. Instead, the tag sends a
special EPC value indicating that it is a WIPR tag and
possibly disclosing a limited subset of the EPC which is
sufficient for use with non-secure readers. To allow for a
single WIPR tag to be succesfully singulated when multi-
ple WIPR tags are present, part of this special EPC value
will be a random value computed on boot. The reader
then starts sending the 80-bit cryptographic challenge.
This operation is performed through the standard EPC
C1G2 WRITE command. After the challenge is sent, the
tag automatically encrypts its payload of data (consisting
of the TID, the challenge, and locally generated random
bits) and places it in the SRAM buffer on ATMega128 chip
ready to be sent by demand. Once the reader issues a stan-
dard BLOCK_READ command to the tag, the ciphertext
is read out from the tag. The reader is free to initiate as
many cycles of data transfer as it wishes between 1 and
138 16-bit words (the entire encrypted payload). As shown
in the following subsection, larger block sizes result in a
faster and more efficient data transfer.

Figure 4. The full WIPR implemented using mandatory C1G2
commands (based on [5, annex E])

It is important to note the three times marked in Figure
4 as Tchallenge, Tencrypt and Tresponse. While Tchallenge and
Tresponse are determined by the speed of the link between
the tag and the reader, Tencrypt is solely a function of the
implementation quality of the WIPR algorithm. It can also
be noted that only a part of Tresponse (marked as T ′

response)
happens after encryption is completed. As we discuss in
the following subsection, this is due to a special property
of the WIPR algorithm which allows for the ciphertext to
be generated byte by byte.

IV. Implementation Results

Implementing cryptographic hardware for passive RFID
tags is challenging due to the fierce constraints. The
main objectives for the designed hardware are to minimize
power consumption and to reduce the necessary chip area.
The reason for the low-power constraint is the operating
range, since the power available to a UHF RFID tag goes
down as the square of the distance between the tag and
the reader. The second big issue is the chip area. The cost
of an RFID tag increases linearly with the die size. In
our implementation both Flash and SRAM memory are
available up to a reasonable amount for RFID tag usage
size because of the chosen implementation method using
embedded microcontroller. Thus, we came to achieve two
main goals: the best performance possible resulting in a
best cryptographic algorithm execution time on a given
microcontroller, and lowest possible resources usage to
make the WIPR public key cryptographic scheme largely
affordable in terms of hardware gate count and costs for
any chosen implementation method.

Implementing the WIPR scheme had a very minor effect
on the resource cost of the IAIK demotag. The code section
of a firmware design with the complete WIPR implemen-
tation requires 33540 bytes, only 7.5% (2534 bytes) more
than the standard version of the firmware without WIPR
support. WIPR uses only 660 bytes of the available 4KB
of SRAM in its most RAM-heavy implementation.

To obtain a better understanding of system’s resources
usage we now give a brief description of the WIPR scheme,
based on [19].

The tag is provided with a 1024-bit public key n,
which is stored in the tag’s ROM and can be copied to
the heap on boot to improve performance. The tag also
stores its signed TID, which can be up to 864 bits long
(for reference, a high-security ECDSA signature is 320
bits long). When issued with a fresh challenge, the tag
generates two random bit strings rt,1 (80 bits) and rt,2
(1104 bits).

When the tag receives the challenge rr sent by the
reader, it stores it in heap memory. It then creates its
response message P = rr||rt,1||TID – i.e., rt,1 is used
as random padding to bring the plaintext to 1024 bits.
Beginning at the least significant byte, the encrypted
message M = P 2+rt,2∗n is computed using multiplication
by convolution. Note that there is no modular reduction,
so the message M is 2208 bits long. The response bytes
are then stored in SRAM memory. The WIPR algorithm
structure allows encryption in a byte-by-byte on demand
fashion, supporting devices with limited memory and also
allowing the response to be generated in the background.

Three possible scenarious were evaluated: first we eval-
uated a naïve implementation which does not cache the
values of P and rt,2 values in SRAM prior to convolution
but instead recalculates them on demand. Next, we tried
caching the value of P before convolution. Finally, we tried
caching the values of both P and rt,2. As depicted in
Figure 5, caching data on the heap has a dramatic effect on
the execution time. The first scenario required 7 seconds to
encrypt. The second scenario (caching only P) took 1.18
seconds, while the third scenario (caching both values prior
to convolution) sped the calculation to 180 milliseconds.
The convolution was implemented using the ATMega128’s
built-in hardware multiplier for all scenarios.

The results show that adding a small amount of heap
space can improve tag performance by several orders of
magnitude. The decision to use SRAM resources is easy
when a microcontroller is chosen for the task. However,
one should keep in mind that SRAM is expensive in space
for ASIC implementations, so a cost-performance trade-off
should be considered for each implementation method.

Figure 6 shows the value of Tresponse as a function of
the amount of bits accessed in each block read operation.
Recall that the computed result of 2208 bits is read from
the tag in a sequence of BLOCK_READ operations, and
the block size is an implementation parameter. If a single
16-bit word is read in every round trip, the 138 read

�

�����

�����

�����

�����

�����

�����

	����

����

�	�� �	�� �
�� �
�� ���� ���� ���� ���� ���� ���� ����

�
��

�
��
�
��
	

�
�

	
��
��
�
�
�
�
�
��
�
�

����������	
����

Figure 5. Tencrypt as a function of heap size

�

�

�

�

�

��

��

��

� �� ��� ��� ����

�
�
��
��
��
�
	
��
�
�

	
�
�
�

	
�
�
�
�	
��
�	
��
�
�
��

�
�
��
�
��
��

	
�
��

	
�
��
�
�
��
	
�
��
�

��
�
�
�

��������	
������������� ������	��

Figure 6. Tresponse as a function of block read size

commands issued by reader take 6.5 seconds to transfer the
entire payload. On the other hand, a block size of 34 bytes
(272 bits, the maximum size supported by our lab setup)
allows the same payload to be transferred in only 0.46
seconds using 8 block reads. Upon further investigation,
we found that the system’s bottleneck is concentrated in
the CAEN reader firmware, which takes about 40ms to
perform a single read operation, regardless of the size
of the data exchanged. This happens because the reader
performs a fresh singulation protocol each time a tag is
accessed, even if the tag is already in the SECURED state.
The singulation process results in 3 unnecessary protocol
round-trips per command, dramatically reducing the I/O
performance. The reader we surveyed also powers up the
radio circuit before each command and shuts it down
again after the command concludes, further reducing per-
formance. The dashed line in Figure 6 shows the estimated
performance of the same reader assuming the tag enters
the read process powered on and singulated and does not
repeat the singulation protocol between commands.

The current reader’s configuration did not allow us
to interfere in its order of execution or implement any
protocol optimization. Table II estimates the values of
Tresponse for a reader-tag link using an optimized EPC
C1G2 flow. The estimation assumes the fixed cost of 40ms
related to powering up and singulating the tag was already

Ciphertext bytes
read per block

Measured
Tresponse (sec)

Estimated
Tresponse (sec)

1 13.1 1.02
2 6.5 0.57
4 3.2 0.34
14 1.1 0.18
28 0.52 0.15
34 0.46 0.14
276 unsupported 0.12

Table II
Tresponse as a function of block read size

Protocol
Step

Current
results

Partial
pipelining

Full
pipelining

Optimization
step

Tchallenge 200 85 85 Write all 80 bits
of the challenge
in a single
round-trip

Tencrypt 180 180 180
Tresponse 460 180 112 Keep tag alive

and singulated
T ′

response 460 60 0 Pipeline
encryption and
transmission
(via FIFO or
via background
calculation)

Total 840 325 265

Table III
Performance of the complete WIPR protocol under
various optimizations (all times are in milliseconds)

incurred when the challenge was sent, so all time incurred
is related to the propagation delay of BLOCK_READ
operations performed at 15kbps.

A. Optimizations
The results we measured are for a completly serialised

operation, with the transmission of the ciphertext start-
ing only after the last byte of ciphertext is calculated
(Tresponse = T ′

response). In addition, the current firmware
of the demotag supports writes of no more than 2 bytes
and reads of no more than 34 bytes, resulting in 5
commands for writing the challenge and at least 8 for
reading the response. Finally, the off-the-shelf reader we
evaluated communicates with tags in an inefficient way,
as discussed previously. By implementing relatively minor
tweaks to these limitations, we can dramatically improve
the operation of the system. Table III shows the estimated
performance gains of these optimization steps.

The first and immediate improvement could be achieved
by better use of the air interface. By sending the challenge
in a single 80-bit packet and keeping the tag in the
SECURED state, we can reduce Tchallenge from 200ms to
an estimated 85ms. Next, we can remove the unnecessary
singulation steps by making sure the reader keeps the tag
powered on and in the SECURED state throughout the
response phase. In addition, we can pipeline the encryp-
tion and response transmission: using WIPR, the tag can

compute the ciphertext in 34-byte blocks and send them
to the reader as soon as they are ready. The total time
to perform the entire protocol in this case is equivalent
to the time required to power on the tag and send it a
challenge (85ms), the time required for the tag to calculate
the full response (180ms) and the time required to send the
final 34-byte chunk, which is ready only after encryption
is finished (60ms). Under these minor modifications we
estimate the entire protocol (including both identification
and authentication) will take 325ms.

For a more dramatic optimization, we can read the
entire 276-byte response in a single read command which
is issued immediately after the challenge is sent. This is
possible since the tag can be designed to concurrently
backscatter the initial bytes of the ciphertext while it
calculates the following ones. Since the data link takes
only 112ms to transfer 2208 bits, the entire protocol time
is dominated in this case by Tencrypt, leading to a total
estimated time of 265ms for the entire protocol.

V. Discussion and Future Work
Public-key cryptography was previously claimed to be

impractical for RFID tags. The reasons for this claim were
the high cost (in gate count and power consumption) of
public key encryption, its slow performance when com-
pared to secret-key ciphers or hash functions, and finally
the lack of standards support. WIPR was shown in [19]
to have an acceptable gate count and power consumption,
but the time presented in [19] was 600ms per encryption,
a delay which might be considered too much in a supply-
chain scenario. In our work, which presents a working
system, we wanted to discover whether the cryptographic
operation is indeeed an inherent bottleneck or whether it
can be sped enough to make the system usable. We also
wanted to address the system issues and find out whether
a practical public-key system can be created using today’s
hardware and standards.

We considered the general-purpose 8-bit microcontroller
present on the demo tag to be inherently slower than a
custom designed ASIC implementation. Indeed, a naïve
software implementation of the WIPR protocol which
was functionally identical to the ASIC’s implementation
took an unacceptable 7 seconds to perform an encryption.
However, as illustrated in Figure 5 the addition of RAM
significantly sped up the software implementation to the
point that the entire encryption took 180ms. It will be
interesting to generalize those results beyond the hardware
used for the implementation and find out whether the
ASIC implementation of [19] can be similarly sped up by
adding a small amount of RAM. It will also be interesting
to consider integration issues between the current EPC
C1G2 tag chips (e.g., the Alien Higgs-3 or the Impinj
Monza 4) and the suggested anti-counterfeiting function.

We found that another serious bottleneck is in commu-
nication, with the dominant parameter being the amount
of roundtrips made by the reader. This problem is even

more acute if the reader being used does not recognize
the concept of sessions and repeats the singulation process
with the tag every time it wishes to send it a command.
It will be interesting to investigate whether other reader
vendors handle multi-request sessions to a single tag more
efficiently. If the tag can calculate the response bits faster
than they are transmitted, optimal performance can be
achieved by a pipeline design which transmits the cipher-
text byte by byte as it is being generated within the
context of a single large read command. This results in a
very efficient performance and a saving of valuable RAM.
Even when using minimal optimizations, the time required
for the complete protocol is quite reasonable (≈325ms),
especially considering the fact that there are no additional
communications with a central server.

The scheme presented here is designed for fully of-
fline operation. While the use of public key cryptography
prevents wholesale counterfeiting, an adversary who is
able to clone a tag will still be able to create many
counterfeit products equipped with copies (clones) of the
same captured "original" tag. Local readers, which do not
perform on-line verifications (off-line verification is one of
the main reasons to use public-key schemes), will recognize
the counterfeit products equipped with the cloned tag as
genuine. To protect against this threat our scheme can
be further strengthened either by the use of standard
track-and-trace or by periodically distributing a small
“blacklist” of cloned TIDs (we expect only a small amount
of these cloned TIDs, since they can only be extracted by
reverse engineering a captured tag).

Our work shows a working implementation of a public-
key based anti-counterfeiting system based on the EPC
C1G2 standard. The system consists of a tag running
custom firmware, but communicates with a standard off-
the-shelf reader using mandatory EPC C1G2 commands.
The fact that our system uses public-key cryptography
simplifies deployment and trust issues and should dras-
tically reduce the system costs related to the use of
anti-counterfeiting. No modifications were made to the
reader or the air interface, proving that high-security anti-
counterfeiting tags and standard EPC tags can coexist and
share the same infrastructure.

We conclude that the public-key approach is a viable
design alternative for anti-counterfeiting RFID EPC tags.

Acknowledgements

The authors wish to thank the anonymous reviewers for
their detailed and helpful remarks.

References

[1] M. Aigner, T. Burbridge, J. J. Cantero, A. Ilic, J. Al-Kassab,
O. Kasten, and A. Plaza. Security technology roadmap. Tech-
nical report, BRIDGE Project, June 2009.

[2] M. Aigner, T. Plos, and A. R. S. Coluccini. Secure semi-passive
RFID tags – prototype and analysis. Technical report, BRIDGE
Project, November 2008.

[3] D. V. Bailey and A. Juels. Shoehorning security into the EPC
tag standard. In R. D. Prisco and M. Yung, editors, Security
and Cryptography for Networks, 5th International Conference,
SCN 2006, LNCS, pages 303–320. Springer, September 2006.

[4] H. Barthel. UHF RFID regulations. Online, June 2006.
[5] Epcglobal inc., EPC radio-frequency identity protocols class-1

generation-2 UHF RFID protocol for communications at 860
MHz – 960 MHz, version 1.0.9. Online, September 2005.

[6] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong
authentication for RFID systems using the AES algorithm.
In J.-J. Q. Marc Joye, editor, Cryptographic Hardware and
Embedded Systems - CHES 2004: 6th International Workshop,
LNCS, volume 3156, pages 357–370. Springer, July 2004.

[7] M. Finiasz and S. Vaudenay. When stream cipher analysis
meets public-key cryptography. In E. Biham and A. M.Youssef,
editors, Selected Areas in Cryptography - 13th International
Workshop, SAC 2006, LNCS, volume 4356, pages 266–284.
Springer, September 2007.

[8] J. Furbass, F.; Wolkerstorfer. ECC Processor with Low Die
Size for RFID Applications. IEEE International Symposium on
Circuits and Systems, 2007, pages 1835–1838, 27-30 May 2007.

[9] G. Gaubatz, J.-P. Kaps, E. Ozturk, and B. Sunar. State of
the art in ultra-low power public key cryptography for wireless
sensor networks. In Third IEEE International Conference on
Pervasive Computing and Communications Workshops, pages
146–150, March 2005.

[10] S. Goldwasser and S. Micali. Probabilistic encryption & how
to play mental poker keeping secret all partial information. In
STOC ’82: Proceedings of the fourteenth annual ACM sympo-
sium on Theory of Computing, pages 365–377, New York, NY,
USA, 1982. ACM.

[11] W. Hübner. The Economic Impact of Counterfeiting and Piracy.
OECD Publishing, June 2008.

[12] R. Koh and E. W. Schuster. Securing the pharmaceutical supply
chain. Technical report, MIT Auto-ID Center, June 2003.

[13] Y. K. Lee, L. Batina, D. Singelee, B. Preneel, and I. Ver-
bauwhede. Anti-counterfeiting, untraceability and other secu-
rity challenges for RFID systems: Public-key-based protocols
and hardware. In D. Basin, U. Maurer, A.-R. Sadeghi, and
D. Naccache, editors, Towards Hardware-Intrinsic Security, In-
formation Security and Cryptography, pages 237–257. Springer
Berlin Heidelberg, 2010.

[14] M. Lehtonen, J. Al-Kassab, F. Michahelles, and O. Kasten.
Anti-counterfeiting business case report. Technical report,
BRIDGE Project, December 2007.

[15] M. Lehtonen, T. Staake, and F. Michahelles. From identification
to authentication - a review of RFID product authentication
techniques. In D. C. Ranasinghe and P. H. Cole, editors,
Networked RFID Systems and Lightweight Cryptography, pages
169–187. Springer Berlin Heidelberg, 2008.

[16] M. McLoone and M. Robshaw. Public key cryptography and
RFID tags. In M. Abe, editor, Topics in Cryptology – The
Cryptographers’ Track at the RSA Conference 2007, LNCS,
volume 4337, pages 372–384. Springer, February 2007.

[17] D. Naccache. Method, sender apparatus and receiver appa-
ratus for modulo operation. European patent application no.
91402958.2, Filed 10/27/1992.

[18] K. Nohl and H. Plötz. MIFARE – little security, despite obscu-
rity. Technical report, 24th Chaos Communication Congress,
December 2007.

[19] Y. Oren and M. Feldhofer. A low-resource public-key identifi-
cation scheme for RFID tags and sensor nodes. In D. A. Basin,
S. Capkun, and W. Lee, editors, WISEC, pages 59–68. ACM,
2009.

[20] M. Rabin. Digitalized signatures and public-key functions as
intractable as factorization. Technical report, MIT, Cambridge,
MA, USA, 1979.

[21] A. Shamir. Memory efficient variants of public-key schemes for
smart card applications. In A. D. Santis, editor, Advances in
Cryptology – EUROCRYPT ’94, LNCS, volume 950, page 445.
Springer, January 1995.

[22] T. Staake, F. Thiesse, and E. Fleisch. Extending the EPC
network: the potential of RFID in anti-counterfeiting. In Pro-

ceedings of the 2005 ACM symposium on Applied computing,
SAC ’05, pages 1607–1612, New York, NY, USA, 2005. ACM.

