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Abstract Symmetric block ciphers, such as the Advanced Encryption Stan-
dard (AES), are deterministic algorithms which transform plaintexts to cipher-
texts using a secret key. These ciphers are designed such that it is computa-
tionally very difficult to recover the secret key if only pairs of plaintexts and
ciphertexts are provided to the attacker. Constraint solvers have recently been
suggested as a way of recovering the secret keys of symmetric block ciphers. To
carry out such an attack, the attacker provides the solver with a set of equa-
tions describing the mathematical relationship between a known plaintext and
a known ciphertext, and then attempts to solve for the unknown secret key.
This approach is known to be intractable against AES unless side-channel data
– information leaked from the cryptographic device due to its internal physical
structure – is introduced into the equation set.

A significant challenge in writing equations representing side-channel data
is measurement noise. In this work we show how casting the problem as a
pseudo-Boolean optimization instance provides an efficient and effective way
of tolerating this noise. We describe a theoretical analysis, connecting the mea-
surement signal-to-noise ratio and the tolerable set size of a non-optimizing
solver with the success probability. We then conduct an extensive performance
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evaluation, comparing two optimizing variants for dealing with measurement
noise to a non-optimizing method. Our best optimizing method provides a suc-
cessful attack on the AES cipher which requires surprisingly little side-channel
data and works in reasonable computation time. We also make available a set
of AES cryptanalysis instances and provide some practical feedback on our
experience of using open-source constraint solvers.
Keywords Application paper · Cryptanalysis · pseudo-Boolean optimizers ·
Side-channel attacks

1 Introduction

1.1 Background

Block ciphers are a common cryptographic building block used in many secure
applications and protocols. A block cipher receives as input a plaintext and
a key, and outputs a ciphertext which depends on the plaintext and the key.
Due to the internal structure of a block cipher, it is generally very simple to
calculate a ciphertext, given a plaintext and a key. It is also simple to calculate
the plaintext, given the ciphertext and a key. It is, however, considerably
more difficult to calculate the key, given one or more pairs of plaintext and
ciphertexts. This difficulty stems from the internal structure of most block
ciphers (described further in Section 2.1) which makes it difficult to write a
simple, low-degree Boolean equation describing the key as the function of the
plaintext and the ciphertext. The field of block cipher cryptanalysis deals with
discovering and describing attacks on block ciphers, including efficient ways of
recovering the secret key of a block cipher from plaintext-ciphertext pairs.

As the field of constraint solvers developed, it became interesting to check
whether a constraint solver can be used directly for cryptanalysis. To carry
out such an attack, the attacker writes the relatively simple equation set which
describes the ciphertext as the function of the plaintext and the key, then fixes
the values of the plaintext and ciphertext, and finally uses a solver to try to
find an assignment to the key bits which satisfies the equation set. The first
attempt to attack a modern cipher – the Data Encryption Standard (DES
[21]) – using constraint solvers was published in 2000 by Massacci et al. in
[16]. This attack methodology was named logical cryptanalysis or algebraic
cryptanalysis. Massacci et al.’s work and subsequent followups ([30,18,11,7])
consistently demonstrated that modern cryptographic algorithms cannot be
directly attacked by constraint solvers.

In parallel to classical cryptanalysis, which treats the block cipher as an ab-
stract mathematical algorithm, another field of research tried to attack block
ciphers based on the physical properties of their actual implementations. This
discipline is called side-channel cryptanalysis, and was first described in an
academical setting by Kocher et al. in [12]1. As formally defined in [14], side-

1 It is believed that this form of attack was well known to the signals intelligence com-
munity from as early as WWII.
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channel attacks are attacks which reveal the secret keys of cryptographic de-
vices by observing their physical properties. The work of [12] and others has
shown that the physical properties of a cryptographic device (such as its tem-
perature, its electromagnetic emanations, and so on) depend on the secret key,
and that it is thus possible to extract the key by processing this information
leakage.

Algebraic Side-Channel Analysis (ASCA), first described in [28], combines
the two fields of algebraic cryptanalysis and side-channel cryptanalysis. A stan-
dard algebraic cryptanalysis instance contains equations describing the actual
encryption algorithm. An ASCA instance contains additional equations rep-
resentative of the physical emanations caused by this algorithm’s execution.
To carry out an ASCA attack, the attacker recovers a vector of side-channel
leaks (such as Hamming weights or Hamming distances) from the power trace,
then writes an equation set mapping these leaks to the evolution of the in-
ternal state of the device; finally, a constraint solver is used to find the
secret key satisfying these equations. In [28] and [27] it was shown that if the
side-channel vector is represented perfectly it is possible to recover the key
from unprotected software implementations of the AES [20] and PRESENT
[5] ciphers with very low data complexity (typically one or two power traces).

The advantage of the ASCA method is its very low data complexity. How-
ever, the ASCA methodology is very sensitive to noise or decoding errors in
the side-channel leak vector, severely limiting its practicality. In [22] a new at-
tack methodology called Tolerant Algebraic Side-Channel Analysis (TASCA)
was presented. This methodology allows the algebraic methods of [27] to be
used for key recovery from a very small amount of side-channel information,
even in the presence of reasonable amounts of measurement noise. Another
modification to the standard ASCA attack which can also tolerate some noise,
called Set-ASCA, was introduced in [31]. The performance of the methods of
[27] and [31] is the focus of this paper.

1.2 Contributions

In this paper we show how the TASCA or Set-ASCA methodology can be used
to recover secret keys from cryptographic devices even if the data available to
the attacker is limited both in quantity (data complexity) and in quality (signal
to noise ratio). We define the set size k as a parameter describing the error-
tolerance of our attack and provide a theoretical analysis which connects the
measurement signal-to-noise ratio and the set size with the success probability.
Comparing TASCA and Set-ASCA, we show that optimizing solvers have a
distinct advantage over non-optimizing solvers in our scenario. Our results
show that using the TASCA method the secret key can be recovered from 60%-
70% of AES instances, even when only a single power trace is provided, and
even when 20% of the trace signal is corrupted by noise. This new cryptanalytic
capability may compromise secure systems whose defense against (statistical)
side-channel attacks is an aggressive re-keying schedule which results in a small
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amount of traces per given key. We also make available a rich and interesting
set of instances and some practical feedback on our experience using open-
source constraint solvers, both of which may be of use to the developers of
these solvers.

The rest of the paper is organized as follows: Section 2 provides the reader
with fundamental information about block ciphers and side-channel attacks. It
then describes various approaches to algebraic side-channel attacks, and in par-
ticular the TASCA method of [22]. In section 3 we provide a formal description
of the problem statement and of the goal function. In section 4 we describe a
theoretical analysis, connecting the measurement signal-to-noise ratio and the
set size in a Set-ASCA or TASCA solver with the success probability. Next, in
Section 5, we describe an experiment setup, both in terms of the device under
test (DUT) and of the software and hardware configuration of the solver. In
Section 6 we list results obtained using standard (non-optimizing) ASCA on
our simulated AES implementation. In Section 7 we describe the actual toler-
ant attack on AES and its performance, and we conclude with some discussion
in Section 8.

1.3 Related Work

In [28] and subsequent works Renauld et al. applied SAT solvers to the problem
of side-channel analysis. Interestingly, while straightforward cryptanalysis was
consistently shown to be beyond the capability of solvers, once equations based
on side-channel information were introduced into the equation set the situation
changed. Renauld et al. showed how a solver-based attack on the modern
cipher AES can terminate in less than a minute with the correct key when
provided with suitable side-channel information. This new attack methodology
was named Algebraic Side-Channel Analysis (ASCA). However, the ASCA
method requires perfectly accurate side-channel data.

One method for dealing with measurement noise was introduced in [27]
and more recently investigated in [31]. In this approach, which we call Set-
ASCA, each entry in the recovered leak vector is not represented as an equation
allowing a single acceptable value. Instead, the equations accept any value
from a set of several possible values. The values in the set are each equally
acceptable, that is, there is no incentive for the solver to choose one value
over another. The resulting equation set is then submitted to a standard SAT
solver. As shown in [31], this approach is quite satisfactory given that enough
leaks and auxiliary information are provided to the solver.

In [22] a different method for dealing with noise is described, called Tolerant
Algebraic Side-Channel Analysis (TASCA). The main ingredient in [22] is the
use of an optimizing solver, with a goal function that minimizes the amount
of modeled noise. In this work we evaluate the TASCA approach and compare
it to the Set-ASCA approach.
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2 Preliminaries

2.1 Symmetric Block Ciphers

This paper deals with solver-based attacks on symmetric block ciphers, one of
the fundamental building blocks of modern cryptography. As defined in [17,
§7.2.1], a block cipher is an invertible function which maps plaintext blocks to
ciphertext blocks. In most block ciphers the plaintext and ciphertext blocks are
of equal size, called the block size n. The block cipher is also parameterized by a
secret key K with a key size of k bits. For n-bit plaintext and ciphertext blocks
and a fixed key, the encryption function is a bijection, defining a permutation
on n-bit vectors, with each key potentially defining a different bijection. The
key may have a different size than the block size and its value is typically
chosen at random.

Many block ciphers follow an iterated design, involving the sequential rep-
etition of an internal building block called a round function. As illustrated in
Figure 1, the round function is repeated r times, and each invocation of the
round function is supplied with a round key rki derived from the input key k
by invoking an invertible key derivation function. The intermediate values of
the iterative cipher are called the state bits, with the initial state equal to the
plaintext and the final state equal to the ciphertext.

2.1.1 The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) cipher is a block cipher proposed
by Joan Daemen and Vincent Rijmen in [8], and adopted by the U.S. govern-
ment in [20] as an encryption algorithm for protecting sensitive government
information. Since its introduction in 2001, AES has arguably become the
world’s most commonly used and well studied block cipher.

AES is an iterated block cipher with a block size n of 128 bits (16 bytes)
– it inputs 128-bit plaintexts, has a 128-bit intermediate state (commonly
treated as 16 state bytes of size 8 bits each, arranged in 4 rows by 4 columns),
and produces 128-bit ciphertexts. AES is defined with three different security
levels, with each level specifying a different key size k and round count r. The
most common variant of AES is AES-128, which has a key size k of 128 bits
and a round count r of 9 rounds. In all variants of AES the key derivation
function expands the master key into the appropriate number of round keys
which are always 128 bits in length.

Each round in AES consists of the following four elementary operations,
or subrounds, which are performed in series:

– SubBytes - in this subround each byte of the state is substituted with
another byte according to a 256-entry substitution table. The AES substi-
tution function, commonly called the S-box, is defined as taking a multi-
plicative inverse of each state byte in GF

(
28), followed by an affine trans-

formation over GF (2).
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Fig. 1 General structure of an iterated block cipher

– ShiftRows - in this subround the state is split into 4 rows of 4 state bytes
each, and each row of the state is cyclically shifted by a differing amount
of bytes.

– MixColumns - in this subround the state is split into 4 columns of 4 state
bytes each, and an affine transform is applied to each column, by treating
the column as a polynomial over in GF

(
28) and multiplying it by another

fixed polynomial.
– AddRoundKey - in this subround the current state is combined with the

appropriate round key using a bitwise exclusive or (XOR) operation.
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Round 1 2 9 10
Subround 1 2 3 4 5 6 7 8 9 · · · 34 35 36 37 38 39 40
Operation K* B R M K B R M K · · · B R M K B R K

Table 1 The subround structure of AES-128 (K*=AddKey, B=SubBytes, R=ShiftRows,
M=MixColumns, K=AddRoundKey)

A complete AES-128 encryption begins with a special AddKey subround,
in which the plaintext is mixed with the original cipher key, (and not one of
the derived round keys) followed by 9 rounds as described above, and ter-
minating with a final round which consists only of SubBytes, ShiftRows and
AddRoundKey. Thus, the complete AES-128 encryption operation consists of
40 subround operations which transform the cipher state from plaintext to
ciphertext, as illustrated in Table 1.

2.2 Side-channel attacks

As formally defined in [14], side-channel attacks are attacks which reveal the
secret keys of cryptographic devices by observing their physical properties. The
work of [12] and others has shown that the physical properties of a crypto-
graphic device (such as its power usage, its electromagnetic emanations, and
so on) depend on the secret key, and that it is thus possible to extract the
key by processing this information leakage. In the past 25 years since they
have been brought to use in an academic setting, side-channel attacks have
been effectively and consistently used to attack systems which are provably
secure in theory, due to information leaked by the physical aspects of their
implementation.

This paper deals with a specific type of side-channel leakage called the
power side-channel. The power side-channel is obtained by precisely measur-
ing the instantaneous power consumption of the DUT as it performs a cryp-
tographic operation, then using this leakage to learn about the internal state
of the DUT. As stated in [14], cryptographic hardware typically uses a CMOS
fabrication process. CMOS-based registers (or flip-flops) consume more power
if they switch between logic states, and less power if they remain in the same
state. Thus, the instantaneous power consumption of a DUT is correlated
with the number of device registers changing state in a particular time pe-
riod, or the Hamming distance between two consecutive hardware states. If
more information about the hardware is available, it is possible to construct
more elaborate leakage models which capture additional information about the
DUT. For a discussion on the use of different leakage models for our attack,
see [23].

The specific device we target in this article is an 8-bit micro-controller
running a software implementation of AES. As shown in [14], this class of
microcontroller can only process data in chunks of 8 bits at a time. Every
time the microcontroller loads such an 8-bit data element into its logic unit
for processing, it first resets the logic unit to a default value (typically 0). This
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means that the amplitude of the power trace is correlated to the Hamming
weight of the byte currently being processed, where the Hamming weight is
defined as the amount of bits in the byte which are set to 1. To recover a secret
key from power traces, the attacker typically measures the amplitude of the
power trace at one or more “interesting” points in time. Next, the attacher
applies a decoding process to these measurements to arrive at estimated values
for the Hamming weights of various bytes processed by the microcontroller
during the cryptographic operation. Finally, a variety of methods from various
disciplines of signal processing, statistics and machine learning, as described
in detail in [14], may be used to arrive from these estimated measurements to
the actual secret key bits.

2.3 Algebraic Side-Channel Attacks

First presented in [28], algebraic side-channel attacks attempt to use constraint
solvers to perform side-channel attacks. To do so, an attacker writes an equa-
tion with both the actual encryption algorithm and a representation of the
physical emanations caused by this algorithm’s execution. To carry out an
ASCA attack, the attacker recovers a vector of side-channel leaks (such as
Hamming weights or Hamming distances) from the power trace, then writes
an equation set mapping these leaks to the evolution of the internal state of
the device; finally, a constraint solver is used to find the secret key satisfying
these equations.

In general, the equation set used in an algebraic side-channel attack con-
sists of three sets of equations: those that describe the encryption process (e.g.
the evolution of the state bytes from plaintext to ciphertext as a function of the
key), those that describe the measurement process (e.g., what is the relation
between the measured side-channel leaks and the encryption state bytes), and
those that describe the results of the physical measurement itself. While the
first two equations are completely deterministic, the actual measurement re-
sults are subject to the physical limitations of the device under test and of the
measurement setup, and are as such sometimes corrupted with errors. There
are several approaches of dealing with this measurement error. We describe
them below, and contrast them in more detail in the remainder of the paper:
– In the conventional algebraic side-channel attack (ASCA) approach [27,

28], only the most probable measurement is considered to satisfy the
equation set. The advantage of this method is its simplicity and high speed,
but this method is highly sensitive to measurement errors and requires a
very high signal-to-noise ratio which is often impractical.

– The Set-ASCA approach, first suggested by [27] and later expanded in
[31], allows several of the more probable measurements to satisfy
the equation system. The set of satisfying assignments is chosen according
to some heuristic, such as the k most likely values or all values whose a
posteriori probability is greater than some threshold. A similar method
was also explored in [19].
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– The Tolerant ASCA (TASCA) approach also allows several measurements
to satisfy the equation system. However, this method also adds a goal
function which indicates which measurements are more likely than others,
based on confidence data output while decoding the physical measurement.
This effectively transforms the problem from a satisfiability problem to
an optimization problem, guiding the constraint solver toward the most
probable input value.

ASCA and Set-ASCA equation sets are classical satisfiability instances, with-
out a goal function. The solver applied to them in [27,28] and [31] was Cryp-
toMiniSAT [1], a solver which is well adapted to deal with cryptographic
problems, as XOR operations (very frequent in cryptographic algorithms) are
managed by the solver using specific optimized clauses. TASCA equation sets
form an optimization instance and include a goal function. These instances
were solved using the SCIP constraint solver [4].

3 Constraint Programming Representation

3.1 Motivation

In a TASCA attack we assume that the attacker is provided with a device un-
der test which performs a cryptographic operation (e.g. encryption). While
encrypting, the device emits a measurable side-channel trace, specifically
a power trace, which is captured by an oscilloscope. A certain amount of
leaks are modulated into the trace, due to the physical characteristics of the
device under attack. These leaks can teach an attacker about the internal state
of the DUT during various stages of the cryptographic operation. While the
leaks are typically integral values (commonly Hamming weights or Ham-
ming distances), the power trace itself is a continuous analog signal which
exhibits noise or errors due to interference and to limitations of the capture
mechanism (see [22, §1.2]).

The TASCA methodology uses the following steps to recover the secret key
from a power trace:
1. In an offline phase, the DUT is first analyzed in order to identify potential

leaks, for instance by reverse engineering.
2. Next, the DUT is profiled and a decoding process is devised. The de-

coding process extracts a vector of leaks from a power trace.
3. After the offline phase concludes, the attacker is provided with a few power

traces (typically a single trace). The traces may also be accompanied by
some auxiliary information such as the known plaintext/ciphertext as-
sociated with this trace. A special decoding process, described in more
detail in [24], can be used to process the power consumption trace of the
DUT and output a vector of Hamming weights corresponding to a cer-
tain cryptographic operation. This vector of decoded Hamming weights,
which may contain errors due to the limitations of the decoding process,
represents each leak as an integer value between 0 and 8.
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4. The leak vector, together with a formal description of the DUT found
through reverse engineering, is represented as a system of pseudo-Boolean
equations. This equation set also includes the auxiliary information. The
equation set is specially formed such that an optimizing solver can receive
a leak vector which is a slightly different from the original vector (due to
the effect of noise) and still find the correct key assignment. The equation
set also contains a goal function, which is used by the solver to measure
the quality of each candidate solution. In our specific case the goal function
indicates that less-errored solutions are preferable to errored ones.

5. Finally, a solver such as SCIP [4] evaluates the equation set and attempts
to find a candidate key which satisfies the equation set while minimizing
the goal function. The solver may fail to terminate in a tractable time, or
otherwise return a candidate key.

6. The candidate key (or, as stated in Subsection 3.4, its immediate neigh-
borhood) is verified.

As indicated in the above list, there are several conditions which must all hold
true before a TASCA attack succeeds. First, the decoder should succeed in
extracting the leaks from the power trace with an error rate which the solver
is robust enough to handle. Next, the solver should return some key, and not
run for an intractable time. Finally, the returned key should be the correct
key.

3.2 Formal Constraint Model

We created a TASCA equation set which represents an algebraic side-channel
attack as a constraint optimization instance. The equation set consists of the
following four sections:

1. A general description of the cryptographic algorithm as a set of
equations: The cryptosystem is described by writing down internal state
transformations leading from plaintext to ciphertext. The specification is
very hardware-minded, with each state bit/memory element (flip-flop) typ-
ically represented as a sequence of variables representing its evolution in
time, and each combinational element (gate) finding its way into an equa-
tion connecting the variables. The specific encoding chosen for AES is
described in more detail below.

2. An assignment of any known inputs to the algorithm: These can
be known plaintext or ciphertext, or even more subtle hints such as the
relationship between two consecutive unknown plaintexts.

3. A specification of the measurement setup: The actual side-channel
measurement is mapped to the internal state according to the structure of
the physical hardware device. For example, an 8-bit microcontroller-based
implementation will typically leak the Hamming weight of individual state
bytes as they are accessed, while a parallelized ASIC will typically leak the
Hamming distance between the former and present values of all bits in the
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device’s internal state. It should be noted that when attacking the same
cipher running on different target architectures, the measurement setup is
usually the only section of the equation set which needs to be modified.

4. A set of potentially errored measurements: This section matches
the measurements described in the previous section to actual outputs of
the estimation phase. As stated previously, the main point of the TASCA
approach is to allow errors in the estimation. This is done in our model
by adding additional error variables to the above-mentioned measurement
equations. These error variables are used to cancel out errors in the mea-
surements. This section is the only part of the equation set which tolerates
errors, as the equations all other sections are precisely defined, and it only
accounts for 1% to 5% of the entire set of equations for the cryptosystems
we tested. A more generic approach, based on detailed feedbacks from the
physical decoding phase, is explored in [23].

The representation language we chose is the OPB notation used by the pseudo-
Boolean solver SCIP [4]. The formal mathematical model, and how we chose to
encode it as a constraint programming problem, is described below. A reference
instance constructed using this model is included in the Appendix.

3.2.1 Decision Variables

As stated in Subsection 2.1.1, the internal state of the AES cipher is stored
in 128 state bits, which are commonly grouped into 16 8-bit state bytes.
These state bytes are initially loaded with the plaintext to be encrypted. Dur-
ing the encryption process, the state bytes are mixed with the round key
bytes and are further manipulated by a series of 10 cipher rounds, each
of which modifies the cipher’s 128-bit internal state. At the end of the last
encryption round the state bytes contain the ciphertext, which is the output
of the encryption process. The 10 rounds can be further broken down into 40
subrounds, as described in Table 1. There are four general subround types:
AddKey/AddRoundKey, SubBytes, ShiftRows and MixColumns.

To model the TASCA instance as a constraint problem, we created several
sets of binary variables:

– State variables St,i,j , which describe the evolution of the cipher state
over time

– Key variables Ki,j and RKr,i,j , which represent the cipher key and the
round keys derived from this key

– Error variables e+
t,i and e−

t,i, which allow the solver to cancel out the
errors inherent in the side-channel measurement process.

The state variables St,i,j follow the evolution of the cipher state between
subrounds. The binary variable St,i,j corresponds to the value of bit j of state
byte i at subround t, where t ∈ [0, 41], i ∈ [0, 15], j ∈ [0, 7]. We use the short-
hand form St,i to refer to the entire 8 bits of state byte i at subround t, and
the shorthand form St to refer to the entire 16 bytes, or 128 bits, of the state
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at subround t. Thus, the set of 128 binary variables S0 represents the plain-
text, the set of 128 binary variables S41 represents the ciphertext, and all other
intermediate states represent the values of the 16 state bytes as they are trans-
formed by the various subround operations. The following subsections describe
in more detail how we realized each subround operation as an equation set.

The key variables Ki,j and RKr,i,j represent the 128-bit key used by
the AES-128 operation, as well as the 10 additional round keys derived from
this key during the AES-128 key expansion phase. The binary variable Ki,j

corresponds to the value of bit j of secret key byte i, while the binary variable
RKr,i,j the value of bit j of byte i of the round key for round r, where r ∈
[0, 9], i ∈ [0, 15], j ∈ [0, 7]. We use a shorthand form to represent these variables
as well, using RKr,i to refer to the entire 8 bits of state byte i at round r and
RKr to refer to the entire 16 bytes, or 128 bits, of the round key for round r.
We also use the notation Ki to refer to the entire 8 bits of key byte i, and K
to refer to all 16 bytes, or 128 bits, of the key.

The side-channel measurement error variables e+
t,i and e

−
t,i allow the

constraint solver to overcome a limited amount of measurement noise in the
side-channel leak equations. The side-channel measurements we consider in
this work are the Hamming weights of individual 8-bit data elements, such
as state bytes, key bytes or intermediate values, as they are processed by a
microcontroller. The actual value of these side-channel leaks (that is, the value
which would have been measured by an optimal decoder in an error-free case)
is thus the integer sum of all the bits in the operand currently being processed
by the microcontroller, or

∑7
j=0 St,i,j . The measured value Mt,i, which is

returned by a non-optimal decoder being influenced by errors, may differ from
the actual value due to the effect of noise. In this work we allow the actual
value to deviate from the measured value by ±1. To capture this error model,
we add a pair of binary variables, e+

t,i and e
−
t,i, to each measurement equation,

and use the goal function to instruct the solver to use as few of these error
variables as possible. The final measurement equation for a single state byte
is thus:

7∑
j=0

St,i,j + e+
t,i − e

−
t,i = Mt,i

As we note below, side-channel measurement equations exist not only for the
state bytes, but also for the key bytes, the round key bytes, and for several
additional intermediate values. A pair of error variables therefore exists for
each of these side-channel measurements.

In addition to these primary variables, the AES instance also contains
additional helper variables to hold intermediate values. As indicated in more
detail below, some of these helper variables describe actual intermediate steps
used by the 8-bit implementation of AES, while other variables are artifacts of
the encoding method we chose and may be omitted by alternative encodings.
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x2 x1 x0 y2 y1 y0

0 0 0 1 0 1
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 0 0 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 1 0

Table 2 The truth table of the ToySubBytes function

3.2.2 Parameters

The parameters passed to the TASCA instance are the values of the known
input plaintext and ciphertexts, as well as the values of the side-channel mea-
surements.

The plaintext and ciphertext values are supplied by fixing the values of
S0 and S41, respectively. In our testing we found that our solver’s perfor-
mance was improved when we combined multiple parameter assignments into
a single pseudo-Boolean clause, rather than using one clause per parameter.
This is probably because the solver’s constraint solving module is more highly
optimized than its parsing module.

The side-channel measurement values Mt,i are provided as the right-hand
side of the pseudo-Boolean measurement equations. Since we model the side-
channel data as the Hamming weight of an 8-bit register, these measurement
values are always an integer between 0 and 8. The integer parameter Mt,i cor-
responds to the measured Hamming weight of state byte i during subround t,
where t ∈ [0, 41], i ∈ [0, 15]. Again we note that these side-channel measure-
ments exist not only for the state bytes, but also for the key bytes, the round
key bytes, and for several additional intermediate values.

3.2.3 State Transition Equations

The AES-128 encryption operation iteratively applies four standard building
blocks, or subrounds, to transform the cipher state from plaintext (S0) into
ciphertext (S41). During several of these subrounds the cipher state is also
mixed with the expanded cryptographic key. The key expansion process, which
converts the initial 128-bit key into 10 128-bit round keys, is also performed
using similar building blocks.

The state transition equations we used for each of the four subround types
is described below.

– AddKey/AddRoundKey: This subround is a straightforward exclusive
or (XOR) between the cipher state and the appropriate key or round key.
There are several ways of expressing XOR in pseudo-Boolean notation,
since it combines binary variables and integer arithmetic. In our testing we
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found that the clause that provided the best performance was a+b−2ab−
out = 0, where a and b are binary variables, and out is the binary variable
representing the XOR output.

– SubBytes: The SubBytes subround independently applies an 8-bit to
8-bit substitution operation to each of the 16 state bytes. The SubBytes()
transformation is a non-linear byte substitution which cannot be described
succinctly as an equation set. We explored several methods of expressing
this transformation, which we demonstrate using a toy example ToySub-
Bytes, whose truth table is given in Table 2. First, we attempted to describe
each of the 8 output bits as a function of all input bits in sum-of-products
form. In the ToySubBytes function, this would result in the following 3
statements:

y2 = x2x1x0 + x2x1x0 + x2x1x0 + x2x1x0

y1 = x2x1x0 + x2x1x0 + x2x1x0 + x2x1x0

y0 = x2x1x0 + x2x1x0 + x2x1x0 + x2x1x0

In the case of the real SubBytes function, this construction resulted in 8
very large equations, one for each output bit, each consisting of a sum of
128 8-bit products. Due to the way the SubBytes function was designed, it
was not possible to shrink these functions by any meaningful quantity by
applying Boolean optimization techniques. Next, we attempted to encode
the function in truth-table form, canonically mapping each possible output
byte to a single combination of the input bits. In the ToySubBytes function,
this would result in the following statement set:

x2x1x0 − y2y1y0 = 0

x2x1x0 − y2y1y0 = 0

x2x1x0 − y2y1y0 = 0

(etc.)

This encoding resulted in 256 short equations, one for each possible output
value. Finally, we attempted to write formulas describing the circuit of the
most hardware-efficient implementation of the SubBytes function, which
we implemented in combinational logic based on the description given in
[6]. This encoding was the smallest, resulting in 148 short equations, but
it generated several additional variables representing intermediate steps of
the computations. In our tests we discovered that the first method resulted
in the quickest runtime, even though it created the largest instance files.

– ShiftRows: in this subround the state bytes are cyclically shifted within
each state row. The actual values of the state bytes are not modified during
this state, making it essentially a logical index shuffling operation. Since
the state bytes are not modified, this subround does not generate addi-
tional side-channel data for our attack. To minimize the size of our AES
instances we chose not to explicitly write down equations for this subround.
Instead, we folded it into the following MixColumns subround – whenever
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a certain state byte was required during the MixColumns subround, we in-
stead referenced the state byte which was to be transformed into this state
byte during the ShiftRows operation. For example, instead of writing:

[S3,0, S3,1, S3,2, S3,3] = [S2,0, S2,5, S2,10, S2,15]

[S4,0, S4,1, S4,2, S4,3] = ColumnTransform ([S3,0, S3,1, S3,2, S3,3])

We wrote:

[S4,0, S4,1, S4,2, S4,3] = ColumnTransform ([S2,0, S2,5, S2,10, S2,15])

– MixColumns: This subround applies a linear transformation to the state
one column at a time, where each column consists of 4 state bytes. This
is a 32-bit operation which is repeated 4 times, once for every column in
the state. MixColumns has an efficient implementation using 8-bit words,
described in detail in [8, §5.1 and §2.1.3], which mostly consists of bit-
wise shifts and exclusive or operations. Since our DUT is an 8-bit micro-
controller, it uses this efficient implementation. As a result, the intermedi-
ate steps of the 8-bit algorithm generate additional side-channel leaks, and
as such are also relevant to us as attackers.

3.2.4 Key Expansion Equations

This set of equations implements an invertible key derivation function mapping
between the secret key variables Ki,j and the round key variables RKr,i,j . As
specified in the AES standard [8, §4.3.1], the round keys for the various rounds
are generated by applying a series of XORs with previous round key values
and with hard-coded values called round constants, and by invocation of the
standard SubBytes operation. For example, the mapping between the secret
key Kand the first round key RK0, using a helper variable RK0,a, is described
by the following equation set:

RK0,a,0 = SubBytes (K13)

RK0,a,1 = SubBytes (K14)

RK0,a,2 = SubBytes (K15)

RK0,a,3 = SubBytes (K12)

RK0,0 = RK0,a,0 ⊕K0 ⊕ 0x01

RK0,1 = RK0,a,1 ⊕K1

RK0,2 = RK0,a,2 ⊕K2

RK0,3 = RK0,a,3 ⊕K3

RK0,4 = RK0,0 ⊕K4
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RK0,5 = RK0,1 ⊕K5

RK0,6 = RK0,2 ⊕K6

RK0,7 = RK0,3 ⊕K7

RK0,8 = RK0,4 ⊕K8

RK0,9 = RK0,5 ⊕K9

RK0,10 = RK0,6 ⊕K10

RK0,11 = RK0,7 ⊕K11

RK0,12 = RK0,8 ⊕K12

RK0,13 = RK0,9 ⊕K13

RK0,14 = RK0,10 ⊕K14

RK0,15 = RK0,11 ⊕K15

We applied the same considerations listed in the previous Subsection to
our choice of optimal representation for the XOR and SubBytes operations.

In the most common usage of AES, the key bytes are expanded as soon as
the key is loaded to the cryptographic device. The expanded round key bytes
are then used for multiple encryption operations, and only the encryption
operations (but not the initial key expansion) are monitored by the attacker.
It is thus commonly assumed that the attacker has side-channel information
only for the encryption operation, but not for the key expansion operation.

3.2.5 Side-Channel Equations

The device under test has a power consumption proportional to the Hamming
weight of the 8-bit word it is currently processing. Since these measurements
are generated whenever the DUT processes a byte, there exists such a measure-
ment equation for each byte of the state after each subround. There are also
measurement equations for the individual bytes of the key and of the round
keys, which are processed by the DUT during the AddKey/AddRoundKey
operations. Finally, there are multiple measurement equations for intermediate
values generated by the 8-bit microprocessor as it performs the 32-bit Mix-
Columns subround, as described in the previous Subsection. As we discuss
further in Section 4, it is sometimes beneficial to include fewer measurement
equations, and by doing so limit the effect of measurement errors on the equa-
tion set.
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3.2.6 The Objective Function

In an algebraic side-channel attack, the attackers objective can be succinctly
described as follows:

Given the algorithmic description of a cryptographic algorithm, the
physical power model of the device under attack and the side-
channel measurements, output a key assignment for which the ex-
pected side-channel information is as close as possible to the mea-
sured side-channel information.

To create the objective function, we recast this problem as an optimization
problem:

Find the minimal assignment to an error vector such that it is pos-
sible for the cryptographic algorithm, operating under a certain
unknown key and in a certain physical power model, to produce
the measured side-channel information affected by this error.

Our objective is thus to minimize the use of error variables to modify the
measurement equations. By writing the objective function as a simple sum
of these error variables we achieve a basic, yet effective, method of guiding
the solver toward the correct solution. We show in [23] how a more elaborate
objective function can use additional outputs from the decoding process, such
as decoder confidence information, to guide the solver into trying to use certain
error variables before others.

3.2.7 Summary

Following the notation described in the previous Subsections, the constraint
problem corresponding to a TASCA instance covering subrounds 1 to 5 can
be written as follows:

Min :
∑

e+
t,i +

∑
e−

t,i, s.t.:

S0 = Plaintext

RK0 = KeyExpansion (K)

S1 = S0 ⊕K

S2 = SubBytes(S1)

S4 = MixColumns(ShiftRows(S2))

S5 = S4 ⊕RK0

7∑
j=0

St,i,j + e+
t,i − e

−
t,i = Mt,i
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Note that the cipher state at the end of the ShiftRows operation (S3) is
not written explicitly. Also note that the assignment of the ciphertext to S41
is omitted, as the equation set only includes the first 5 subrounds and as such
any assignment to the ciphertext will be simply optimized away.

A full TASCA instance constructed using this methodology consists of
approximately 6,500 variables and 6,000 constraints, which are reduced to
approximately 5,000 variables and 5,000 constraints during the SCIP solver’s
presolving phase. The instance occupies approximately 1.3 megabytes of disk
space in OPB format. A representative constraint problem with this structure
can be found in the Appendix, and a set of full-length instances can be found
in the contributed data set accompanying this article, as further described in
Subsection 8.3.

3.3 The TASCA Problem Space

The TASCA solver is presented with leak equations and with auxiliary in-
formation such as known plaintext and ciphertext, and is tasked with finding
the secret key.

At the most extreme case of limited information, the solver is provided
only with equations describing the encryption algorithm, but with no leak
equations at all and with no auxiliary information. It is immediately evident
that this instance is trivial to solve but will return an incorrect key, since
any key will satisfy this extremely underspecified problem. The same holds if
no leaks are known and only the plaintext or the ciphertext (but not both)
are provided as auxiliary information.

In contrast, if the plaintext and ciphertext are both provided, and no leak
equations exist, the problem degrades to that of standard algebraic crypt-
analysis – with high probability only a single key exists that will satisfy this
plaintext-ciphertext relation, but this cryptanalytic instance is too difficult
to solve, making it impossible for a solver to find the key in a reasonable
time[16].

Another extreme case is the case where all side-channel data is presented
to the solver, without any measurement error. As shown in [27], even with no
auxiliary information the solver has enough information to solve the prob-
lem successfully and efficiently and find the correct key in a reasonable
time. Obviously, any additional auxiliary information such as known plaintext
or ciphertext only increases the probability of a successful outcome.

The amount of leak information provided to the solver is measured both
by the number of measurement equations and by the amount of error toler-
ance built into each equation. As opposed to ASCA problems, for which the
leak equations are precisely defined, TASCA (and Set-ASCA) leak equations
admit several possible values for each leak, allowing the solver to tolerate some
amount of noise in the measurements.
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Incorrect Key Bytes 0 1 2 3 4 5
AES operations required 1 212 224 236 248 260

Estimated time using AES-NI[3] <1 sec <1 sec <1 sec 25 sec 24 hr 9 yr

Table 3 Estimated time for brute-force searching for incorrect key candidates

3.4 Dealing with Solver Failures

The solver does not always succeed in recovering the correct key. There are
three possible failure modes:
– The first type of failure occurs when the solver reports that the problem

is unsatisfiable. The source of this failure is a decoding failure – the
decoder introduces more noise into the leak equations than the solver is
capable of dealing with.

– The second type of failure occurs when the solver times out and does not
return any answer within the specified time.

– The third type of failure occurs when the solver returns an incorrect
key. Typically this failure is caused by too few leak equations, or too much
error tolerance, which causes the problem to be under-defined.

A specific type of the third failure mode, which we discovered to be quite
common, results in the solver returning a partially correct key. Due to the
specific byte-oriented micro-architecture of AES, this mode is usually charac-
terized by a partition of the key bytes into a group of perfectly correct bytes
and a group of wrong bytes. Since the error tends to be localized to only a few
bytes, the key can be recovered in some cases from the incorrect result using a
moderate amount of brute-force searching (since we have a plaintext/cipher-
text pair).

To analyze the brute-force effort required by an attacker, assume that e of
the 16 AES key-bytes are incorrect, and that the rest are correct. The attacker
must go over all

(16
e

)
≈ 24e possible locations for those errored bytes, then try

256e = 28e possible candidate assignments for these positions, resulting in an
approximate total effort of 24e ·28e = 212e AES operations. Most modern Intel
CPUs have a native implementation of AES (AES-NI), which allows a sus-
tained rate of more than 231 AES operations per second on a contemporary
system[3]. As illustrated below in Table 3, an attacker can use a single ma-
chine with an AES-NI implementation to probe the close neighborhood of a
candidate key and find the correct key within several hours, even if as many
as 4 of the 16 bytes returned are incorrect.

4 Theoretical Modeling of Error Tolerance

4.1 Measuring Error Tolerance

Since there are different ways of encoding error into an equation set, it is diffi-
cult to compare the ability of different methods to deal with errors. Therefore,
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it is useful to find a way to discuss errors in terms of standard metrics such as
signal to noise ratio or bit error rate.

As stated in Section 3, the side-channel leak is first passed through a de-
coder, where it is converted to set of leak equations, and next to a solver. The
equation representations we discuss here deal with errors by permitting more
than one valid assignment to each individual leak (i.e. they follow either the
Set-ASCA or the TASCA methodologies). Thus, a set of k values are accepted
for each leak. A necessary condition for the solver (Set-ASCA or TASCA) to
succeed is that the correct value of each leak is a member of the acceptable
set presented to the solver2.

Let us now assume that we wish to carry out an attack based on Hamming
weights of internal calculations performed by an 8-bit micro-controller. In this
model each leak xi is an integer value which takes a value between 0 and 8.
The leak is modulated onto the amplitude of the power trace, subjected to
some additive noise, and finally recovered by the attacker.

As shown in [14], in the case of an 8-bit micro-controller the amplitude of
the power trace is approximately linearly dependent on the Hamming weight.
To recover the Hamming weight from the power trace, the attacker typically
measures the amplitude of the power trace at one or more points in time,
then applies an affine transform to these measurements to arrive at x̂i, the
estimated value for the leak xi. This estimated value can thus be seen as the
result of the original integral leak xi and an additive Gaussian noise element
νi ∼ N (0, σ): x̂i = xi + νi.

To put this model into standard engineering signal and noise terms, the
signal power Ps can be defined as the variance of the Hamming weights of the
inputs, assuming a uniform distribution of the inputs. The noise power Pn can
be defined as the variance of the noise ν. This leads to the standard definition
of signal-to-noise ratio:

Definition 1 Let HW (i) denote the Hamming weight of an integer i ∈
[0, 255]

Proposition 1 SNR ≈ −20 log10 σ + 3

Proof
SNR = 10 log10

Ps

Pn

= 10 log10

1
256
∑255

i=0 (HW (i)− E [HW (i)])2

σ2

Since E [HW (i)] = 4 it can be verified that the numerator equals 2, giving

SNR = 10 log10 2− 10 log10 σ
2

≈ −20 log10 σ + 3
2 This is not a sufficient condition – even if all leaks are recovered correctly the problem

may still be under-defined or computationally intractable.
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Now that x̂i is defined, it needs to be presented to the solver. Assuming
the solver is a TASCA or Set-ASCA solver with a set of size k, the natural
approach would be for the decoder to populate the set of valid solutions with
the k integer values closest to x̂. A necessary condition for the solver to succeed
would then be that one of the elements of the set output by the decoder is the
original xi. The elements of this set may all be considered equally desirable (in
the case of Set-ASCA), or otherwise ranked according to their distance from
x̂i (in the case of TASCA). For example, if the set size k is 1 (corresponding
to ASCA) and the decoder observation was x̂i = 2.2, the set will contain the
value 2. In other words, if the decoder outputs the symbol closest to x̂i, and
the original symbol xi was 2, the attack will succeed only if the decoded value
x̂i is between 1.5 and 2.5, or equivalently if the noise νi is between −0.5 and
0.5. If k is 2, the equations will allow the values 2 and 3, and the attack will
succeed only if x̂ ∈ (1.5, 3.5). In general, if k values are acceptable then the
noise νi must be in the range

[
−k

2 ,
k
2
]
. For a decoding success we require this

condition to hold for all m leaks in the leak vector simultaneously. Assuming
the noise is i.i.d. for all leaks, the probability of such an event is:

Pr (Decoding Success)

= P

(
x̂i ∈

[
xi −

k

2 , xi + k

2

]
|xi

)m

= P

(
xi + νi ∈

[
xi −

k

2 , xi + k

2

]
|xi

)m

= P

(
νi ∈

[
−k2 ,

k

2

]
|xi

)m

= P

(
νi ∈

[
−k2 ,

k

2

])m

=
(

1√
2πσ2

ˆ k
2

− k
2

e− x2
2σ2 dx

)m

By fixing the set size k and the number of leaksm and solving for σ, we can
apply Proposition 1 and find the maximum Gaussian noise power tolerable by
sets of size k if a certain success probability is desired.

If we define the per-leak error rate as the probability that a set of size 1
does not contain the correct value of xi, we can convert the value of σ to an
error rate using the following relation:

Definition 2

Perror = P

(
νi /∈

[
−1

2 ,
1
2

])
= 1− 1√

2πσ2

ˆ 1
2

− 1
2

e− x2
2σ2 dx
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Leak Count m =100 leaks m =200 leaks
Set size k min. SNR [dB] max. error rate min. SNR [dB] max. error rate

1 20.8 0.1% 21.2 0.05%
2 14.8 5.2% 15.2 4.3%
3 11.3 19.5% 11.6 17.7%
4 8.8 33.1% 9.1 31.1%

Table 4 Relation between error rate and set size for normally distributed noise when we
require Pr (Decoding Success) = 99%

Table 4 summarizes these results for relevant ranges of parameters. It can be
seen from the table that each set size corresponds to a certain maximal error
rate and, equivalently, to a certain minimal signal-to-noise ratio. We can see
that for a set size k = 1 (corresponding to the ASCA method) the maximum
error rate is between 0.05% and 0.1% for m ∈ [100, 200]. Such a low error
rate is impractical to achieve even with high-end measurement equipment.
However, with k = 3 it is possible to tolerate an error rate of almost 20%,
which is within reason.

Figure 2 displays the probability that a decoder using a set of size k = 3 will
correctly capture all measurements with a fixed error rate. It can be seen that
as the number of equations m grows, the probability of decoding success falls
exponentially. Therefore, we see that an increase in information (represented
by a higher number of leak equations) causes a decrease in the robustness of
the attack, making it more sensitive to errors. Thus (and perhaps counter-
intuitively) it makes sense to provide the solver with the least amount of
side-channel information required for a successful key recovery, even if more
information is available.

4.2 Evaluating Solver Performance

A central component of this attack is a pseudo-Boolean optimizer, described
in more detail in [2]. There are several ways of constructing such a solver, for
example by extending a SAT solver or by constraining an Integer Programming
solver.

When evaluating the performance of various solving methodologies, we
used the following metrics of performance:
1. The time it takes the solver before the key is successfully recovered. This

metric gives an advantage to SAT solvers, which are simpler in construction
than PB optimizers and are dramatically faster for instances of similar size.

2. The success probability of the attack to succeed, given a typical power
trace. While this is an important practical consideration, we note that from
a security standpoint an attack that can break AES for a small but signif-
icant fraction of the instances it encounters is arguably just as dangerous
as one that can break nearly all instances.

3. The amount of leaks required – naturally, the attack which requires the
least amount of leaks is the most useful. We consider this metric signifi-
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Fig. 2 Decoder success rate as a function of leak count m, with a fixed set size k = 3 and
an error rate of 30% (σ = 0.4824, SNR=9.3dB)

cant, especially considering the large amount of profiling and preprocessing
involved in a complete attack and the interplay between the amount of re-
quired leaks and the maximum tolerable error rate (see Section 4).

4. The ability of the solver to tolerate noise and error. There are several
conflicting ways of treating this metric and we will attempt to unify them
in this discussion.

5 Experiment Setup

In this section we describe the setup we used for our experiments with ASCA,
Set-ASCA, and TASCA.

5.1 The Device Under Test

As a device under test we chose an 8-bit micro-controller implementation of
AES-128, based on the standard NIST implementation of [20] and on a hard-
ware implementation specified in [29]. We assumed that the device leaks the
Hamming weight of the 8-bit operand on its data bus. Following the obser-
vations of Section 4, we aimed to provide the minimum amount of (errored)
measurements to the solver. Thus, we only modeled the first few rounds of
AES. We made the following assumptions:

– Only the plaintext is provided to the solver, but not the ciphertext.
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– The leaks from the key expansion process are not available to the solver,
since we assume that the DUT performs round key expansion in advance.3

– TheAddKey andAddRoundKey operations leak the Hamming weights
of the 16 state bytes after the XOR with the key/round key, as well as the
Hamming weights of the key bytes themselves, giving a total of 32 leaks
per subround.

– The SubBytes operation is implemented as a look-up table (LUT). The
equations representing the SubBytes operation use the canonical represen-
tation (see [22, §5.2]), using a single equation per output bit or a total
of 8 equations per invocation of SubBytes. The LUT operation leaks only
the Hamming weights of the 16 state bytes after the SubBytes operation
(and not any other internal state information), for a total of 16 leaks per
subround.

– The ShiftRows operation is implemented logically as index shuffling and
as such does not leak any information.

– TheMixColumns operation is implemented using 8-bit XTIME and XOR
operations as specified in [20] and as such leaks 36 additional bytes of
internal state per round. In addition to the 16 leaks of the final state, this
gives a total of 52 leaks per subround.

In total each round of AES (consisting of SubBytes, ShiftRows, Mix-
Columns and AddKey/AddRoundKey) leaks 100 Hamming weights of
8-bit values.

The experiments were performed under various error rates and set sizes
up to the theoretical thresholds calculated in Section 4. We chose to focus on
the performance of the solver and not on that of the decoder, assuming that
the leaks satisfied the necessary condition for decoding success outlined in
Section 4. To apply an error rate of e to the Hamming weight measurement
vector of length m for a given experiment, em indices were chosen indepen-
dently at random, and the Hamming weight at each of these selected indices
was modified by either ±1 (for sets of size k = 3) or by +1 (for sets of size
k = 2). Sample AES instances created using this method are available online
[26] and are described in the Appendix.

Each ASCA or TASCA instance consists of a general description of the
cryptographic algorithm as a set of equations, an assignment of any known
inputs to the algorithm, a specification of the measurement setup, and finally
a set of potentially errored measurements. For TASCA instances we also in-
clude a goal function, which instructs the solver to aim for a solution (i.e.
key assignment) which minimizes the amount of noise in the measurements. If
we change the measurement equations so that they do not admit noise (i.e.,
let k = 1) and eliminate the goal function, we transform the problem from a
TASCA instance to an ASCA instance similar in form to that used in [28].

3 It was already established in [13] that the Hamming weights leaked from an 8-bit micro-
controller implementation of AES during key expansion are sufficient for full key recovery,
even without any additional state information.
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Fig. 3 ASCA cumulative success rates for different amounts of side-channel data

5.2 Solver Software and Hardware

The solver used in our experiments was SCIP version 1.2.0 compiled for Win-
dows 64-bit[4]. SCIP is a general purpose MIP solver with robust support for
pseudo-Boolean optimization instances. When we began running our experi-
ments in late 2009, this solver was listed by [15] as the best non-commercial
solver available for non-linear optimization problems. The solver was run on
a quad-core Intel Core i7 950 at 3.06GHz with 8MB cache, running Windows
7 64-bit Edition. To take advantage of the multiple hyper-threading cores of
the server, six instances of the solver were run in parallel. It should be noted
that running a single instance at a time will result in noticeably better perfor-
mance due to less contention on the L2 cache (equation solving is very RAM
intensive) and due to Intel’s Turbo Boost feature which speeds up one compu-
tational core when the others are idle [10]. The running time of each instance
was limited by a shell script – ASCA and Set-ASCA instances were limited
to two hours and TASCA instances limited to two days. A set of MATLAB
scripts was used to create random instances, run the solver and collect the
results automatically.

6 Results – ASCA with No Errors

An ASCA instance typically has a smaller solution space than a TASCA in-
stance, and is thus much easier to solve. We used ASCA instances to determine
the minimal amount of side-channel information which can be provided to the
solver for an efficient and correct response.
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Amount of side-channel data Mean solving Success rate after...
time 10 sec 80 sec 2 hrs

Round 1 (100 leaks) 392 sec 12.4% 19% 93.6%
Round 1 + AddRoundKey(132 leaks) 1950 sec 14.2% 30.8% 65.6%

Round 1 + AddRoundKey + SubBytes (148 leaks) 102 sec 0% 64% 66%
Round 1 + Round 2 (200 leaks) 137 sec 0% 64.2% 66.3%

Table 5 Success rate of the ASCA solver at different times
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Fig. 4 ASCA wrong key histograms

Figure 3 shows the success probability of non-error-tolerant ASCA mea-
surements as a function of the run-time with different amounts of side-channel
data. It can be seen that 20%-60% of the problems are solved within about
1 minute while the rest run for a significantly longer amount of time. This
agrees with the findings of [27].

Table 5 summarizes the success rate of the ASCA solver as a function
of time for different amounts of side-channel data. Based on Section 3.4, we
consider as success cases where the solver terminates and returns a key which
is at most 4 bytes apart from the correct one .

Based on these results we conclude that very few error-free side-channel
measurements – a single AES round is sufficient – can usually achieve full
key recovery. We discovered that if we reduced the leak count to less than
a full round, the probability of success became vanishingly small. Note that
the success probability after 2 hours is largely unaffected by the amount of
side-channel information. Thus it makes sense to use only a single round of
leaks and no more, and thus increase the robustness of the attack.

A possible drawback to using a small amount of side-channel data is the
risk of a producing an underspecified problem, causing the solver to return an
incorrect answer. To demonstrate the impact of this effect, Figure 4 shows the
distribution of incorrect key bytes in the recovered solution for 100 and 132
of side-channel measurements, where instances which did not terminate after
2 hours were assigned the all-zero key.
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We can see that with 100 leaks, only 6.4% of the recovered keys had more
than 4 incorrect key bytes. With 132 measurements this rate drops to 0.2%, but
an additional 35% of the instances fail with a solver time-out. With additional
measurements the fraction of wrong bytes drops to nearly 0 (graphs omitted).
As discussed previously in Subsection 3.4, even 3 or 4 incorrect key bytes
can be considered a correct result, if we allow the immediate neighborhood
of the candidate key to be probed using brute force. Under this assumption,
in all cases the key was either recovered correctly or the operation timed out.
This leads us to conclude that 100 leaks (one full AES round) are enough to
uniquely determine the key in the case of error-free ASCA (i.e., k = 1), even
if the ciphertext is not provided to the solver.

7 Results – TASCA and Set-ASCA with Errors

This section describes the results of TASCA and Set-ASCA runs on simulated
power traces of AES which have been corrupted with noise. We tested the
average solving time and average success rates for various combinations of
side-channel information amounts and error rates. We also measured the effect
of the optimizing aspect of the solver (the goal function) on the performance
of our solver.

7.1 Effect of Error Rate

The objective of this experiment was to measure the effect of the error rate
on the solving time and success probability of our TASCA solver. Based on
the conclusions of the previous section, we provided our TASCA solver with
one round of side-channel leaks (m =100 measurements) and with a known
plaintext. The error rate was chosen to be between 0% and 25%. According to
Table 4, a decoder has at least a 99% probability of success when producing
such a set of equations, given the above parameters and a set of size k =3.
Figure 5 shows our results. We also ran the experiment with k = 2 and error
rates of up to 5% (results omitted).

In general, the TASCA approach showed itself capable of recovering the
secret key, with a success probability of 30%-80%, from errored traces in 6 to
24 hours for sets of size k = 2 and k = 3, even with error rates all the way
up to the theoretical boundary of 19.5% previously calculated in Subsection
4. Interestingly, we could find no significant correlation between the error rate
and the success rate, nor between the error rate and the solving time. This is
in contrast to our previous results on Keeloq [22], where increasing the error
rate caused a measurable increase in the running time and a corresponding
decrease in the success rate.
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Fig. 5 Effect of error rate on success rate and solving time for 3-set TASCA of AES with
m = 100 leaks (20 experiments per data point)

Set Size k 1 2 3 4
Success probability (TASCA) 78% 87.5% 73% 72.7%

(Set-ASCA) 78% 9.2% 0% 0%
Mean solving time in minutes (TASCA) 6.45 245.2 901.99 1332.07

(Set-ASCA) 6.45 171.05 7.18 2.92

Table 6 TASCA vs. Set-ASCA performance with 100 leaks

7.2 Comparing TASCA and Set-ASCA

As discussed in Subsection 4.2, an alternative approach to TASCA called Set-
ASCA was introduced in [27] and more recently investigated in [31]. In this
approach the k values in the set are each equally acceptable, that is, there is
no incentive for the solver to choose one value over another. The Set-ASCA
equation set, which is essentially similar to the straight ASCA equation set,
is then submitted to a standard SAT solver. Assuming an identical quantity
of leaks is used in both cases, Set-ASCA has been shown in [31] to be about
20 times faster than (optimizing) TASCA. However, many keys – potentially
an exponential amount – may satisfy the same side-channel leak equations.
If a non-optimizing solver is used in this case, it will arbitrarily choose a
satisfying solution and terminate, making its success probability exponentially
small. In contrast, an optimizing solver will only terminate once it has found
a solution which minimizes the goal function. Assuming the goal function has
been correctly specified, we hypothesized that an optimizing TASCA approach
is more likely to find the correct key than a random satisfying assignment.

To investigate this scenario, we compare a TASCA and a Set-ASCA solver
operating on m =100 leaks of side-channel data with 0% errors, varying the
set size from k = 1 (standard ASCA) to k = 4. Table 6 describes our results.
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Note that for a set size of k =1, both TASCA and Set-ASCA solvers are
reduced to the case of standard ASCA, making their performance identical.
As we expected, the solving time of the optimizer is much worse than that of
the SAT solver, a difference that only grows as the set size grows. On the other
hand, it can clearly be seen that the accuracy of Set-ASCA falls dramatically
when we must increase the set size k to overcome decoder failures: the SAT
solver used in Set-ASCA may terminate quickly, but it provides the correct
key in only 9% of the cases for k = 2 and is virtually always wrong for k = 3
or k = 4. This is caused by the large set of admissible solutions made possible
by the lower precision of the leak equations. Since the SAT solver chooses one
of these solutions arbitrarily, its success rate falls dramatically as the set size
grows. In contrast, the optimizer is motivated to choose the best solution from
the available set. As a result, its success rate is largely determined by the error
rate (as we saw in Subsection 7.1) and not by the set size.

8 Conclusions and Discussion

8.1 Comparison with Keeloq Results

This paper describes an attack on the block cipher AES [20]. A previous work
[22] applied TASCA to Keeloq ‘[9], a simple stream cipher used in car remote
controls and other low-security applications. There are several differences be-
tween the Keeloq cipher and the AES cipher, when viewed from the perspective
of a TASCA attack. On one hand, the Keeloq cipher seems easier to analyze
because of its weak diffusion property – the key bits are shifted into the Keeloq
cipher state one bit at a time, whereas in 8-bit AES they are introduced into
the cipher state one byte at a time. On the other hand, the Keeloq imple-
mentation runs on an ASIC circuit which leaks 32-bit Hamming distances,
a side-channel leak which is generally considered more difficult to attack in
contrast to the 8-bit Hamming weights leaked by the AES implementation.

Table 7 contrasts AES and Keeloq instances in terms of their respective
sizes and solving times. The Keeloq instances use m =90 subrounds (and
hence 90 measurements), while the AES instances use one AES round with
m =100 measurements. In both cases the TASCA instances use a set size of
k = 3 and the leaks are corrupted with a 5% error rate. It can be seen from
the table that despite the fact that the AES instance is only 9 times larger
than the Keeloq instance, it is harder to solve by three orders of magnitude.
Another interesting difference, which we demonstrated in Figure 5, is the low
correlation between the error rate and the solving time for AES – as shown in
[22], the solving time of Keeloq TASCA instances increases super-linearly with
the error rate, while we could observe no such condition in the case of AES.
In our experiments, AES instances took roughly the same amount of time to
solve regardless of their error rate.

Both differences in behaviour between AES and Keeloq may be attributed
to the different diffusion properties of the two ciphers. While in Keeloq the
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Keeloq AES Ratio
ASCA instance size 140KB 1.3MB x9.3
ASCA instance time 0.36 sec 387 sec x1072
TASCA instance size 140KB 1.3MB x9.3
TASCA instance time 22 sec 8.7hr x1436

Table 7 Comparison of AES and Keeloq performance

key is introduced into the equation one bit at a time, in AES it is XORed
into the plaintext as soon as encryption begins and further diffused by the
following operations. The good diffusion property of AES makes it difficult for
the solver to infer the value of one variable from the assignment of another.
This both increases the run-time and defeats the “added value” granted to the
solver for correctly determining a partial solution. Since diffusion has such a
profound effect, finding a more precise power model of the cipher which allows
additional leaks to be considered and reduces this diffusion property should
make AES instances easier to solve.

8.2 A Strategy for Successful TASCA Attacks

As shown in this report, the choice of operating parameters can have a sub-
stantial effect on the running time and success probability of an algebraic side-
channel attack. Increasing the amount of side-channel measurements available
to the solver has a mixed effect: On one hand, as shown in [31], it decreases
the space of possible solutions sufficiently to allow the use of non-optimizing
solvers with better running times. On the other hand, it increases the sensitiv-
ity of the solver to noise. For a fixed amount of side-channel leaks, we showed
that increasing the size of the set of acceptable values per leak (k) increases
the running time but does not decrease the success probability of the attack.

In view of these findings, we can recommend that implementers first char-
acterise the expected signal-to-noise ratio of the DUT using standard signal
processing techniques; Next, they should choose the minimal amount of side-
channel leaks (m) required for a successful key recovery; Finally, they should
choose the minimal set size (k) which can tolerate the expected amount of
noise with good probability. Specifically in the case of AES, we discovered
that using m =100 leaks is a good choice for signal to noise ratios of as low as
20dB for k =1, up to 14dB for k =2, and up to 11dB for k =3.

8.3 Contributed Data

The TASCA instances we created during our research may be interesting to
developers of constraint programming tools. Our instances have a highly regu-
lar structure due to the structure of symmetric block ciphers. Our experiments
indicate that the solving difficulty of these instances is largely independent of
the variable/clause ratio, but instead depends on domain-specific properties
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such as the signal-to-noise ratio of the power trace. We have made available
data sets both for the Keeloq and the AES ciphers, and both for the Ham-
ming weight leakage model and for more elaborate leakages. These data sets
are all available on our website [25,26]. We have also submitted some of our
instances to the yearly pseudo-Boolean competition [15] under the non-linear
optimization category. Quite interestingly, the solving performance of these
instances has improved considerably between consecutive PB competitions.
For example, our most difficult Keeloq instance, 90_rounds_15_errors.opb,
took us 2990 seconds (49 minutes) to solve using SCIP version 1.2.0. In the
2011 pseudo-Boolean competition the same instance was solved in 450 seconds
(7.5 minutes) by SCIP version 2.0.1.4. Finally, in 2012 the same instance was
solved in only 50 seconds by SCIP 2.1.1.4 – a 60-fold increase in performance.

8.4 Practical Considerations for Solver Authors

As we evaluated different open-source solvers, we found that there are several
properties which make some solvers better suited than others for our spe-
cific attack. Our observations may be of interest to writers and designers of
constraint solving systems:
1. Robust input handling: We wrote our equation set in the variant of the

OPB format specified by Manquinho and Rousselin in [15]. We chose this
format to allow us to easily switch between the different submissions to
the PB competition and evaluate their performance. However, we discov-
ered that some solvers crashed or behaved unpredictably when receiving
extremely large or improperly formatted input files. In addition, several
solvers did not allow us to use meaningful variable names, requiring that
all variables be named “x1”, “x2”, etc. Solver designers should take note
that some instances may be hand-written and contain errors and domain-
specific variable names, and be prepared to deal with such inputs.

2. More detailed outputs: The typical outputs produced by the solvers we
evaluated contained either a description of the optimal instance – that is,
the satisfying assignment and the corresponding value of the goal function
– or an opaque claim of unsatisfiability. We were also interested in more
detailed outputs in both cases – for satisfiable instances, we would like
the solver to provide descriptions of satisfying but suboptimal assignments
it considered and later rejected. In the case of unsatisfiability, we were
interested in learning about the minimal clause set required to cause a
logical contradiction. Finally, we were interested in any partial assignments
discovered by the solver, even if the instance ultimately times out. We
would have been able to use these partial outputs as the starting point to
a cryptographic brute-force attack which quickly goes over all unassigned
variables.

3. Snapshots and suspend/resume functionality: Some of our instances
took several weeks to run. While these instances were running we had ex-
tremely limited information about their progress, mainly based on periodic
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outputs to a log file. In addition, any intentional or unintentional restart
of the solver hardware (due to e.g. security updates, power failures, etc.)
caused us to lose many days of computation time. We would have liked the
solver to periodically save its current run-time state to disk for detailed
analysis. More importantly, we would have wanted the ability to back up
these snapshots, then restart the solver based on such a snapshot.

4. Indication of key variables: Some of our AES instances were over 5MB
of size and contained more than 20,000 variables and clauses. Many of the
variables in the instance described internal technical states of the AES
cipher which were of no practical interest to us as attackers. In fact, we
were only ultimately interested in the 128 variables describing the secret
key bits. Since our solver had a “pre-solving” phase, at which it applied
various Boolean optimizations to the problem instance to make it more
efficient to solve, we would have liked the ability to indicate these critical
variables ahead of time, to ensure they are not “optimized away” during
the pre-solving step.

8.5 Conclusion

This report shows how optimizing constraint solvers can be applied to side-
channel cryptanalysis. The noise-tolerant TASCA approach, which was previ-
ously applied to the low-security Keeloq cipher, was shown to be usable for
full-strength ciphers such as AES. The secret key can be recovered from 60%-
70% of AES instances even when only a single trace is provided, and even
when 20% of the trace signal is corrupted by noise. This new cryptanalytic
capability may compromise secure systems whose defense against (statistical)
side-channel attacks was an aggressive re-keying schedule which results in a
small amount of traces per given key – as we showed, even a single encryption
is enough to recover the key, assuming that the device under attack has been
properly profiled by the attacker.
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Appendix: A sample TASCA Instance

The appendix demonstrates some of the equations used in a TASCA attack on
AES with set size k = 3, following the notation introduced in Subsection 5.1.
We show a sample of the goal function, the plaintext assignment, the round
functions and the measurement equations. The equations are given in the OPB
format supported by the SCIP solver [4]. Full instances can be downloaded
from our website at [26].

∗ Pla in t ex t Assignment : 16 equat ions o f 8 b i t s each
∗ This compact form o f assignment , which s p e c i f i e s 8 b i t s at a time ,
∗ r e s u l t s in sma l l e r i n s t anc e s i z e s and
∗ be t t e r performance us ing SCIP , when compared to
∗ a s s i gn i ng a s i n g l e b i t per c l au s e .
∗ s_0_0_ [ 0 : 7 ] = 0xC5 :
+1 s_0_0_0 +2 s_0_0_1 +4 s_0_0_2 +8 s_0_0_3 +16 s_0_0_4 . . .

+32 s_0_0_5 +64 s_0_0_6 +128 s_0_0_7 = 197 ;

[ . . . ]

∗ Round 1 o f AES: up to 10 s e t s o f equat ions ( t y p i c a l l y 1)
∗ s_1_ [ 0 : 1 5 ]_[ 0 : 7 ] = AddKey(s_0_ [ 0 : 1 5 ]_[ 0 : 7 ] , k_ [ 0 : 1 5 ]_ [ 0 : 7 ] ) :
∗ s_1_0_0 = XOR(s_0_0_0 , k_0_0)
−1 s_1_0_0 +1 s_0_0_0 +1 k_0_0 −2 s_0_0_0 k_0_0 = 0 ;
∗ s_1_0_1 = XOR(s_0_0_1 , k_0_1)
−1 s_1_0_1 +1 s_0_0_1 +1 k_0_1 −2 s_0_0_1 k_0_1 = 0 ;

[ . . . ]

http://iss.oy.ne.ro/TASCA/Instances
http://iss.oy.ne.ro/Template-TASCA/Instances
http://opencores.net/project,aes_crypto_core
http://opencores.net/project,aes_crypto_core
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∗ s_1_15_7 = XOR(s_0_15_7 , k_15_7)
−1 s_1_15_7 +1 s_0_15_7 +1 k_15_7 −2 s_0_15_7 k_15_7 = 0 ;

∗ s_2_0_ [ 0 . . 7 ] = SubBytes (s_1_0_ [ 0 . . 7 ] ) :
−1 s_2_0_0 +1 ~s_1_0_0 ~s_1_0_1 ~s_1_0_2 ~s_1_0_3 ~s_1_0_4 . . .

~s_1_0_5 ~s_1_0_6 ~s_1_0_7 +1 ~s_1_0_0 s_1_0_1 ~s_1_0_2 . . .
~s_1_0_3 ~s_1_0_4 ~s_1_0_5 ~s_1_0_6 ~s_1_0_7 . . .
+1 ~s_1_0_0 s_1_0_1 s_1_0_2 s_1_0_3 s_1_0_4 s_1_0_5 s_1_0_6 s_1_0_7 = 0 ;

[ . . . ]

∗ s_4_ [ 0 : 1 5 ]_[ 0 : 7 ] = ShiftRows+MixColumns (s_2_ [ 0 : 1 5 ]_[ 0 : 7 ] ) [8− b i t ] :

∗ [ s_4_0 , s_4_1 , s_4_2 , s_4_3 ]_[ 0 : 7 ] = . . .
ColumnXform ( [ s_2_0 , s_2_5 , s_2_10 , s_2_15 ]_[ 0 : 7 ] ) [8− b i t ] :

∗ s_4_0_0_1_0 = XOR(s_2_0_0 , s_2_5_0 , s_2_10_0 , s_2_15_0)
−1 s_4_0_0_1_0 −8 s_2_0_0 s_2_5_0 s_2_10_0 s_2_15_0 . . .

+4 s_2_0_0 s_2_5_0 s_2_10_0 +4 s_2_0_0 s_2_5_0 s_2_15_0 . . .
+4 s_2_0_0 s_2_10_0 s_2_15_0 +4 s_2_5_0 s_2_10_0 s_2_15_0 . . .
−2 s_2_0_0 s_2_5_0 −2 s_2_0_0 s_2_10_0 −2 s_2_0_0 s_2_15_0 . . .
−2 s_2_5_0 s_2_10_0 −2 s_2_5_0 s_2_15_0 −2 s_2_10_0 s_2_15_0 . . .
+1 s_2_0_0 +1 s_2_5_0 +1 s_2_10_0 +1 s_2_15_0 = 0 ;

[ . . . ]

∗ Side channel measurements :
∗ Measured Hamming weight f o r byte 0 o f subround 0 = 4 :
+1 s_0_0_0 +1 s_0_0_1 +1 s_0_0_2 +1 s_0_0_3 +1 s_0_0_4 +1 s_0_0_5 +1 s_0_0_6 . . .

+1 s_0_0_7 +1 e_s_0_0_p −1 e_s_0_0_n = 4 ;
∗ Measured Hamming weight f o r byte 1 o f subround 0 = 5 :
+1 s_0_1_0 +1 s_0_1_1 +1 s_0_1_2 +1 s_0_1_3 +1 s_0_1_4 +1 s_0_1_5 +1 s_0_1_6 . . .

+1 s_0_1_7 +1 e_s_0_1_p −1 e_s_0_1_n = 5 ;

[ . . . ]

∗ Measured Hamming weight f o r byte 15 o f subround 3 = 0 :
+1 s_3_15_0 +1 s_3_15_1 +1 s_3_15_2 +1 s_3_15_3 +1 s_3_15_4 +1 s_3_15_5 . . .

+1 s_3_15_6 +1 s_3_15_7 +1 e_s_3_15_p −1 e_s_3_15_n = 0 ;

∗ Goal term :
∗ each s i d e channel i n t roduce s two e r r o r v a r i a b l e s :
∗ "_p" f o r po s i t i v e , and "_n" f o r negat ive e r r o r .
∗ The goa l func t i on minimises the sum of a l l the se v a r i a b l e s .
min : +1 e_s_0_0_p +1 e_s_0_0_n +1 e_s_0_1_p +1 e_s_0_1_n . . .

+1 e_k_15_p +1 e_k_15_n ;
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