

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

(a) Two micro grabbing probes connected to the Samsung SNH-1011N
smart camera UART terminal while a third probe is connected to the chassis
of the USB port for grounding

(b) Three probes connected to the Xtreamer Cloud Camera UART
terminals, the probes are being held in place by friction

Figure 6: Temprorary probe connections to UART terminals of inspected IoT devices, temporary connections are useful for
making quick evaluations of devices

Table II: List of devices reverse engineered

Device ID Device Type Manufacturer Model Video Recording Additional
Capabilities

Price (USD)

1 IP Camera Xtreamer Cloud Camera Yes None 84
2 IP Camera Simple Home XCS7_1001 Yes None 54
3 IP Camera Simple Home XCS7_1002 Yes None 47
4 IP Camera Simple Home XCS7_1003 Yes None 142
5 IP Camera Foscam FI9816P Yes None 70
6 IP Camera Foscam C1 Yes None 58
7 IP Camera Samsung SNH-1011N Yes None 68
8 IP Camera Xiaomi YI Dome Yes None 40
9 IP Camera Provision PT-838 Yes None 163
10 IP Camera Provision PT-737E Yes None 102
11 IP Camera TP-Link NC250 Yes None 70
12 Baby Monitor Phillips B120N Yes None 46
13 Baby Monitor Motorola FOCUS86T Yes None 145
14 Doorbell Danmini Wi-Fi Doorbell Yes Open door/gate 80
15 Doorbell Ennio SYWi-Fi002 Yes Open door/gate 119
16 Thermostat Ecobee 3 (golden firmware) No HVAC control 170

Table III: Inspected devices and the techniques effective on them

Device ID UART location* Bootloader
password

Terminal
password

Terminal password bypass
technique

Data extraction technique

2 Marked pads No Yes Shorted memory caused
fall back

Used Wget to download
NetCat

5 Unmarked pads* No No - Physically read the onboard
flash

8 Unmarked pads* No No - Used echo to transfer
NetCat over UART

10 Unmarked pads* Yes** Yes Set bootcmd in bootloader Used NetCat
11 Unmarked pads* No Yes Trivial password Used Wget to download

NetCat
12 Marked pads No Yes Set bootcmd in bootloader Used NetCat
15 Unmarked pads* No Yes Trivial password Used TFTP to download

NetCat
16 Unmarked pads* No No - Used NetCat

* Unmarked pads were discovered by inspecting the PCB (with assistance from the UART discovery assistant module described in subsection II-A3.
** Bootloader password was recovered using a logic analyzer to sniff communication on the memory bus.

7

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

The table also mentions the techniques that were shown to be
effective against these devices.

We describe some of the obstacles encountered and how
they were overcome below.

1) Device 2 - Bootloader in read-only mode: The boot-
loader on device 2 did not allow keyboard input, leading
to difficulty bypassing the Linux password. The approach
selected in this case was to cause a physical fault during the
boot process and observe the results.

A paperclip was used to bridge the memory MISO (Master
In Slave Out) pin and the ground pin, causing any read from
the memory chip to fail. After several attempts, the boot
process fell back into a shell process allowing filesystem
manipulation.

2) Device 5 - Bootloader was password protected: De-
vice 5 contained a password-protected bootloader, and two
approaches were successfully used to retrieve the password.
The first approach included reading the memory chip using
a CH341A USB adapter connected to an SOIC-8 clip for
easy attachment to the chip; the dumped memory was later
analyzed, and the password was found within. The second
approach utilized the Saleae Logic Pro 8 logic analyzer which
was attached to the memory chip; by analyzing the outgoing
signals we were able to obtain a more narrow memory image
including only the bootloader code where the password was
easily found.

3) Device 8 - No network tools were available on the
device: While analyzing device 8, no network tools could
be found to facilitate the transfer of files to and from the
device. In order to facilitate the transfer of the NetCat tool
executable, the echo technique was used in which raw binary
data is translated to ‘echo’ commands that are automatically
sent over the UART interface using a Python script.

4) Device 16 - UART interface pads were not easily iden-
tified: A plethora of test pads made the task of locating
UART terminals a difficult task when inspecting device 16.
Using the UART discovery assistant module described in
Subsection II-A3, the detection of the UART terminals became
an effortless endeavor. The UART terminal location can be
seen in Figure 4b.

C. Discoveries Made During the Evaluation

1) Login credentials: One of the most significant steps of
reverse engineering an IoT device is to identify all of the user
accounts within the device. Every device contains at least
one effective account which is the root account. The root
account is the most privileged account on a Unix system. The
root account has the ability to carry out all facets of system
administration, including adding accounts, changing user pass-
words, accessing the file system, and installing software. Once
a hashed password is recovered and its underlying plaintext
password revealed, the ability of logging onto the device with
root user privileges is obtained. As can be seen in Table IV,
eight of the devices contained passwords hashed with the
descrypt algorithm, whereas the other eight devices employed
md5crypt. The correct selection of the hashing algorithm is
critical for resisting password cracking, for example, descrypt

hashing can be as much as ninety times faster than md5crypt,
as described in Subsection II-C.

The pattern based password recovery described in Sub-
section II-C was used against all of the extracted password
hashes. Figure 7 shows the theoretical duration of password
recovery using the proposed 48,820 patterns that cover all of
the password possibilities previously mentioned. The patterns
were sorted in order of increasing complexity. For example,
the pattern for six consecutive digits contains 1,000,000 pos-
sibilities and was sorted before the pattern for five consecu-
tive English characters that has 11,881,376 possibilities. As
the figure shows, most observed non-empty passwords were
recovered within the first 5,000 patterns, after testing only
5.22e+11 passwords. The theoretical bound for testing that
many passwords on a strong GPU server is 2.4 minutes for
descrypt hashes and 217 minutes for md5crypt. Actual pass-
word recovery can impose significant overhead on theoretical
bounds.

Eleven non-empty passwords were recovered, and one de-
vice contained an empty password. Four passwords still had
not yet been recovered and are expected to be revealed within
several weeks. Table IV shows the password complexities
which varied between very low complexity (e.g. ‘abcd’) to
medium complexity (e.g. ‘AbC123de’); undiscovered pass-
words were given the complexity rating ‘Unknown’. All the
passwords discovered swere verified as the credentials in
multiple devices of the same model. Two devices made by
the same manufacturer were discovered to have the same
passwords but different hash values due to random salt.

2) Remote access: A simple port scan using Nmap [37]
revealed that many of the tested devices have administration
services bound to open ports such as SSH or Telnet, which
allows remote access. Remote access allows a user to log-in to
a device as an authorized user without being in the proximity
of the device, depending on the network topology. Six of the
devices maintain a Telnet service, one device has an accessible
SSH port and two devices allow communication to open FTP
ports as can be seen in Table IV.Although some of the devices
do not allow communication through an administration port,
by accessing the UART console it is possible to set up network
services performing the desired functions.

3) Wi-Fi credentials: IoT devices must be connected to the
Internet in order to function properly. In order to maintain
wireless connection persistency after reboots and power short-
ages, a configuration file that holds the Wi-Fi credentials is
typically stored by Linux and was located in all of the tested
devices. The configuration file is located in the mounted file
system, usually under the ‘config’ or ‘NetworkManager’ paths,
and contains all of the Wi-Fi settings, including the SSID
(service set sdentifier) and non-encrypted passwords. Retrieval
of the correct file from an extracted file system can be done
simply by searching the filesystem for relevant keywords.

4) Embedded private keys: A private key is an object that is
used by an encryption algorithm for encrypting and decrypting
messages and plays an important role in asymmetric cryptogra-
phy. The usage of a public/private key communication scheme
relies on the private key being secret and proper practice

8

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

Table IV: Discovered device properties

Device ID Similar Products Password Hash
Type

Open Services for
Remote Access

Password
Complexity

Contains
Private Keys

1 Closeli Simplicam descrypt None found Medium Yes
2 None found md5crypt Telnet Very Low None found
3 None found descrypt Telnet Low None found
4 TENVIS TH692 md5crypt Telnet Low None found
5 None found md5crypt FTP Unknown Yes
6 None found md5crypt FTP Unknown None found
7 None found md5crypt None found Unknown None found
8 None found md5crypt None found None None found
9 VStarcam D38 descrypt None found Low None found
10 VStarcam C23S descrypt Telnet Low None found
11 None found md5crypt None found Very Low None found
12 None found descrypt SSH Medium Yes
13 None found md5crypt None found Unknown None found
14 None found descrypt Telnet Very Low None found
15 None found descrypt Telnet Very Low None found
16 None found descrypt None found Low None found

Figure 7: Time required for password recovery using the GPU server described in Table I. Each marking on the graph represents
a successfully recovered password of an inspected device.

dictates that the server’s private key should only be present
on the server.

In three of the devices a hard-coded private key used for
secure communication was found, as shown in Table IV. With
the private key exposed, secure communication is rendered
insecure and exposed to violations such as man-in-the-middle
and communication sniffing attacks.

5) Rebranded devices: Rebranding is the creation of a
new look and feel for an established product or company.
In the IoT market, a rebranded device is one where the
internal design, architecture and file system are purchased from
one manufacturer, and cosmetic modifications are applied the
device giving it a new brand and manufacturer. Identifying
rebranded devices means that previously discovered private
keys, hashed passwords, account credentials and even the
application vulnerabilities may be identical across several
devices. Four of the inspected devices were found to share
a non-trivial password or hashed password with products
from different manufacturers, strongly implying a similarity

between them. The devices were found using a simple Web
search for the passwords and hashes that resulted in a number
of forum posts that specify hashes and passwords of other
devices.

IV. ANALYSIS

The techniques presented in Section II may be used for
both malicious and beneficial activities. In this section we
demonstrate and discuss some of the possibilities that emerge
from making the reverse engineering process more generic and
streamlined, while considering the results seen in the previous
section.

A. Extension of Existing Attacks into New Platforms

1) Creation of a personalized Mirai botnet with increased
capabilities: The relative ease of compromising modern IoT
devices combined with limited knowledge on the part of
consumers regarding the security of their devices has created

9

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

fertile ground for malicious exploitation of such devices.
Numerous DDoS (distributed denial-of-service) attacks have
been traced and were shown to originate from networks of
infected IoT devices commonly referred to as botnets.

The infamous Mirai botnet gained publicity after it was
used against several online websites. After witnessing a large-
scale DDoS attack on KrebsOnSecurity.com, Martin McKeay,
Akamai’s senior security advocate was quoted as saying,
“Someone has a botnet with capabilities we haven’t seen
before. We looked at the traffic coming from the attacking
systems, and they weren’t just from one region of the world or
from a small subset of networks, they were everywhere.” [38].
Mirai malware infects IoT devices with an open Telnet port
and default login credentials and adds them to the attacker’s
botnet army. The source code for Mirai was leaked later on to
the Internet on and can be modified and used by anyone who
desires [39].

By using the reverse engineering process we were able
to extract new and previously unknown Telnet and SSH
credentials belonging to several IoT devices that were never a
part of the Mirai botnet. In order to create a customized version
of the Mirai botnet, the source code was modified by adding
the new passwords to it. After building an isolated network and
infecting it with the modified Mirai botnet, the bot activity over
the network was monitored and the infection could be seen
spreading to the IoT devices that were subsequently added to
the network.

In our work we observed an interesting case involving
ProVision security cameras; after extracting the login creden-
tials of the ProVision PT-838 security camera, the modified
botnet was able to successfully connect to the ProVision PT-
737E security camera due to the credentials shared between
the cameras of the same manufacturer. The aforementioned
process allows the number of devices that are vulnerable to
Mirai and similar botnets to increase. Considering that both
cameras have been found to be rebranded (as seen in Tab.
IV), other camera models will likely to be vulnerable to our
modified Mirai malware without any further efforts on our
part.

2) Remote access to IoT devices by unauthorized parties:
Remote connection to an IoT device, via Telnet or SSH
which can be performed by malware for various purposes,
can also be used as an easy and quick way for an at-
tacker to gain control over a device remotely. The Philips
In.Sight wireless HD baby monitor (B120N/10) was designed
to allow parents to watch, listen, and talk to their newborn
[40]. During the reverse engineering process several critical
engineering faults that allow an outsider to use this device
were discovered. Credentials were revealed that allow anyone
to connect through the open SSH port in all Philips In.Sight
B120N monitors. Additionally, SSL private keys that allow
an attacker to perform man-in-the-middle attacks on device
communication were discovered. Furthermore, as shown in
the previous section, after gaining access to an IoT device the
attacker can extract sensitive information about the device and
its owner (for example, the credentials for the Wi-Fi network
from the devices unencrypted configuration file).

3) Execution of arbitrary code on IoT devices: During the
reverse engineering process, software is often uploaded onto
the device in various ways. The ability to upload software and
maintain persistency after restarts has significant implications
on device security. It has been shown that it is possible to
gain complete control of a device when physical access is
available, and physical access to a device can be used to
modify the device’s behavior even when the device is no longer
in proximity.

B. Possible Theoretical Attacks

1) Discovery of new vulnerabilities: By using the black
box reverse engineering process, an attacker that possesses an
unknown device (e.g., a security camera with no identification
markings printed on it) that was obtained from a public area
may extract crucial or sensitive information. During the reverse
engineering we found out that many IoT devices had old OS or
firmware versions that are now outdated, or have been patched
when vulnerabilities were discovered or fixed in later versions.
After identifying the firmware or OS version of an IoT device,
the attacker can search the Internet for known vulnerabilities
or even find this information in the release notes of more
updated versions. Furthermore, after obtaining the firmware
the attacker can scan the software for security holes using
static analysis methods [41], [34].

2) Extraction of secrets from publicly accessible IoT de-
vices: Many IoT devices are intended for outdoor installation
(e.g., security cameras, smart doorbells, etc.). These products
are mounted outside or in large halls and can be accessed
by strangers. For example, the Ennio doorbell (SYWIFI002)
contains a camera, microphone, and speaker in order to
monitor and control entrance to a facility; the doorbell can
also be wired to a door or a gate for remote unlocking. The
doorbell is typically installed outside and may be accessed
from the street. A direct result of the device’s accessibility is
the ability of an attacker to physically modify or sabotage the
device. However, it is not just the device that may be affected,
since confidential material may be extracted from the device
giving the attacker access to the whole network.

3) Supply chain attacks: Malicious modification can also
be performed as a part of the supply chain. An untrustworthy
vendor or courier can reverse engineer a device without having
any previous knowledge about it and perform modifications to
the device. Once access had been gained, the software can be
modified in ways that are not visible to the consumer. The
user of an IoT device may utilize it without knowing it was
tampered with, and perhaps even equipped with a backdoor or
some other malware.

C. Beneficial Uses of the Reverse Engineering Process

There are uses of reverse engineering that are not malicious
or illegal and can benefit the owner. Low-end products are
often accompanied with insufficient information about their
hardware or software. A concerned consumer can use the
process we’ve presented to learn about the device and its
properties. If the device has been rebranded the consumer
could search the Internet for similar devices provided by other

10

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

vendors. The consumer obtains the ability to learn about the
device’s vulnerabilities and perhaps even upgrade the firmware
and secure the device. This process can be performed on many
types of IoT devices and may also be helpful in securing
products no longer supported by vendors. Becoming more
knowledgeable and informed regarding the device’s software
and hardware can not only help the customer get to know their
product; it also allows the owner to customize the device to
meet his/her needs. After gathering the desired information
the owner can manipulate the firmware or configuration and
develop the device further, and even add missing functionality.
Modification of stock devices can also be used to hinder
censorship and other information blocking instruments.

V. DISCUSSION

As the IoT market evolves, the competition among vendors
in the race to be the first to create better and cheaper devices
increases. This pressure may affect the products’ design and
lead to the release of devices with critical security weaknesses.
Time is not the only obstacle for creating a secure product;
as competition drives the prices down, the production process
must also become cheaper. Although the hardware engineers
designing the product often lack cyber security knowledge,
employing penetration testers and security analysts may be
very expensive. This trade-off between money and security
usually favors the production of cheaper but less safe products.
A gap exists between the amount that is known about new
devices on the marketplace and what is needed for assessing
and ensuring their security. The reverse engineering process
empowers consumers and researchers with abilities to discover
important details regarding devices available on the market and
benchmark their security.

A. Recommendations for Implementers

Based on the analysis performed and results obtained in
this research, we make the following recommendations for
improving the security of IoT devices.

1) Removing UART ports: UART ports typically have no
function in mature devices. While obfuscation of UART ports
is a widely used technique for hindering reverse engineering,
it may not be effective in the face of devices such as the
UART discovery assistant module described in Subsection
II-A3. Whenever possible, UART ports should be removed
from finalized products, and their terminals should not appear
in board designs.

2) Restricting access to UART ports: In situations where
UART ports are essential in consumer products, they can be
set up as read-only. An example can be seen in the debug port
available in Google Nexus phones that can be accessed through
the headphone port; The system logs are funneled using UART
communication while maintaining a read-only mode.

3) Protecting UART ports: If a UART port is required
and must be write-enabled, certain protective measures should
be considered. Previous works suggested safeguarding UART
ports in a similar fashion to JTAG protection [42].

4) Hardening bootloader security: Hardening of bootloader
security should be considered; bootloaders can be protected by
physical means so that they only go into debug mode when
specified electrical criteria are met or when using passwords.
Although bootloader passwords were observed during our sur-
vey, retrieval of the passwords was easy using communication
dumps, meaning that more sophisticated defenses should be
employed.

5) Usage of unique passwords: Using the same passwords
in devices of the same model or manufacturer enables a
low resource attack to be amplified across many devices. In
addition to hashing passwords with a strong hashing algorithm
such as SHA-516 crypt, strong unique passwords should be
used for each and every device.

6) Facilitating password replacement: Hard-coding pass-
words should be avoided. Users must be able and encouraged
to replace passwords frequently and easily.

7) Encryption of device memory: When possible all of the
device’s memory should be encrypted, similarly to what is
done with mobile devices.

8) Encryption of sensitive data: All sensitive data stored
on the device, including configuration, should be encryption.

9) Pen-testing devices: Many of the issues uncovered in
this paper could have been easily detected prior to product
launch. Therefore, devices should be pentested before being
deployed. The techniques shown in this paper and others such
as those shown by Ling et al. [33] can be used to create an
infrastructure for device audit.

B. Conclusion

The increase in IoT technology’s popularity holds many
benefits, but this surge of new, innovative, and cheap devices
is accompanied by complex security and privacy challenges.
Vulnerabilities and design flaws in seemingly innocent and
ubiquitous IoT devices are an opening for an adversary to
exploit and misuse. As shown in Section IV, an attacker that
gains remote or physical access to an IoT device may snoop
on the owner’s personal or sensitive information and use the
device’s capabilities for their own benefit. The evolution of
cyber crime has not bypassed the IoT, and in recent years we
have witnessed new types of cyber attacks that involve IoT
devices. The accessibility of the black box reverse engineering
process may accelerate the attacker’s work and introduce new
IoT cyber threats.

REFERENCES

[1] Gartner, “Gartner says 4.9 billion connected "things" will be in use
in 2015,” 2014. Available at http://www.gartner.com/newsroom/id/
2905717.

[2] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the internet-of-things,” in Proceedings of the 14th ACM Workshop on
Hot Topics in Networks, Philadelphia, PA, USA, November 16 - 17, 2015
(J. de Oliveira, J. Smith, K. J. Argyraki, and P. Levis, eds.), pp. 5:1–5:7,
ACM, 2015.

[3] D. Lund, C. MacGillivray, V. Turner, and M. Morales, “Worldwide and
regional internet of things (iot) 2014–2020 forecast: A virtuous circle
of proven value and demand,” International Data Corporation (IDC),
Tech. Rep, 2014.

[4] Nest Labs, “Nest learning smart thermostat.” Available at https://nest.
com/thermostat/meet-nest-thermostat/.

11

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

[5] R. Mahmoud, T. Yousuf, F. A. Aloul, and I. A. Zualkernan, “Internet
of things (iot) security: Current status, challenges and prospective
measures,” in 10th International Conference for Internet Technology
and Secured Transactions, ICITST 2015, London, United Kingdom,
December 14-16, 2015, pp. 336–341, IEEE, 2015.

[6] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things: The road ahead,” Computer
Networks, vol. 76, pp. 146–164, 2015.

[7] I. Alqassem and D. Svetinovic, “A taxonomy of security and privacy
requirements for the internet of things (iot),” in 2014 IEEE International
Conference on Industrial Engineering and Engineering Management,
IEEM 2014, Selangor Darul Ehsan, Malaysia, December 9-12, 2014,
pp. 1244–1248, IEEE, 2014.

[8] Z. Zhang, M. C. Y. Cho, C. Wang, C. Hsu, C. K. Chen, and S. Shieh,
“Iot security: Ongoing challenges and research opportunities,” in 7th
IEEE International Conference on Service-Oriented Computing and
Applications, SOCA 2014, Matsue, Japan, November 17-19, 2014,
pp. 230–234, IEEE Computer Society, 2014.

[9] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and
privacy issues in internet-of-things,” IEEE Internet of Things Journal,
2017.

[10] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, 2017.

[11] M. W. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen,
“Uninvited connections: A study of vulnerable devices on the internet
of things (iot),” in IEEE Joint Intelligence and Security Informatics
Conference, JISIC 2014, The Hague, The Netherlands, 24-26 September,
2014, pp. 232–235, IEEE, 2014.

[12] Shodan, “Shodan is the world’s first search engine for internet-connected
devices.” Available at https://www.shodan.io/.

[13] R. Bodenheim, J. Butts, S. Dunlap, and B. E. Mullins, “Evaluation of the
ability of the shodan search engine to identify internet-facing industrial
control devices,” IJCIP, vol. 7, no. 2, pp. 114–123, 2014.

[14] M. Tellez, S. El-Tawab, and H. M. Heydari, “Improving the security of
wireless sensor networks in an iot environmental monitoring system,”
in Systems and Information Engineering Design Symposium (SIEDS),
2016 IEEE, pp. 72–77, IEEE, 2016.

[15] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
Generation Comp. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[16] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” Commun. ACM,
vol. 52, no. 5, pp. 91–98, 2009.

[17] J. Lanet, G. Bouffard, R. Lamrani, R. Chakra, A. Mestiri, M. Monsif,
and A. Fandi, “Memory forensics of a java card dump,” in Smart Card
Research and Advanced Applications - 13th International Conference,
CARDIS 2014, Paris, France, November 5-7, 2014. Revised Selected
Papers (M. Joye and A. Moradi, eds.), vol. 8968 of Lecture Notes in
Computer Science, pp. 3–17, Springer, 2014.

[18] J. Obermaier and M. Hutle, “Analyzing the security and privacy of
cloud-based video surveillance systems,” in Proceedings of the 2nd ACM
International Workshop on IoT Privacy, Trust, and Security, pp. 22–28,
ACM, 2016.

[19] C. Hollabaugh, Embedded Linux : hardware, software, and interfacing.
Boston: Addison-Wesley, 2002.

[20] R. Davis, N. Merriam, and N. Tracey, “How embedded applications
using an rtos can stay within on-chip memory limits,” in 12th EuroMicro
Conference on Real-Time Systems, pp. 71–77, 2000.

[21] Atmel Corporation, “Attiny13a datasheet,” May 2012. Available at http:
//www.atmel.com/images/doc8126.pdf.

[22] Anonymous, “The author’s github repository. details omitted for anony-
mous submission,” 2017. Available at http://www.qqq.com.

[23] M. S. Pedro, M. Soos, and S. Guilley, “FIRE: fault injection for reverse
engineering,” in Information Security Theory and Practice. Security and
Privacy of Mobile Devices in Wireless Communication - 5th IFIP WG
11.2 International Workshop, WISTP 2011, Heraklion, Crete, Greece,
June 1-3, 2011. Proceedings (C. A. Ardagna and J. Zhou, eds.), vol. 6633
of Lecture Notes in Computer Science, pp. 280–293, Springer, 2011.

[24] L. Goubet, K. Heydemann, E. Encrenaz, and R. D. Keulenaer, “Efficient
design and evaluation of countermeasures against fault attacks using
formal verification,” in Smart Card Research and Advanced Applications
- 14th International Conference, CARDIS 2015, Bochum, Germany,
November 4-6, 2015. Revised Selected Papers (N. Homma and M. Med-
wed, eds.), vol. 9514 of Lecture Notes in Computer Science, pp. 177–
192, Springer, 2015.

[25] J. DaRolt, A. Das, G. D. Natale, M. Flottes, B. Rouzeyre, and
I. Verbauwhede, “Test versus security: Past and present,” IEEE Trans.
Emerging Topics Comput., vol. 2, no. 1, pp. 50–62, 2014.

[26] R. J. Anderson and M. G. Kuhn, “Low cost attacks on tamper resistant
devices,” in Security Protocols, 5th International Workshop, Paris,
France, April 7-9, 1997, Proceedings (B. Christianson, B. Crispo,
T. M. A. Lomas, and M. Roe, eds.), vol. 1361 of Lecture Notes in
Computer Science, pp. 125–136, Springer, 1997.

[27] D. Vlasenko, “Busybox: The swiss army knife of embedded linux.”
Available at https://busybox.net/.

[28] F. Courbon, S. Skorobogatov, and C. Woods, “Reverse engineering flash
EEPROM memories using scanning electron microscopy,” in Smart Card
Research and Advanced Applications - 15th International Conference,
CARDIS 2016, Cannes, France, November 7-9, 2016, Revised Selected
Papers (K. Lemke-Rust and M. Tunstall, eds.), vol. 10146 of Lecture
Notes in Computer Science, pp. 57–72, Springer, 2016.

[29] “Firmware-mod-kit github repository.” Available at https://github.com/
mirror/firmware-mod-kit.

[30] “crypt(3) man page.” Available at http://man7.org/linux/man-pages/
man3/crypt.3.html.

[31] “John the ripper password cracker.” Available at http://www.openwall.
com/john/.

[32] “Hashcat password recovery tool.” Available at https://hashcat.net/.
[33] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu, “Security vulner-

abilities of internet of things: A case study of the smart plug system,”
IEEE Internet of Things Journal, 2017.

[34] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014. (K. Fu and J. Jung, eds.), pp. 95–110, USENIX Association, 2014.

[35] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.,” in NDSS, 2016.

[36] M. Liu, Y. Zhang, J. Li, J. Shu, and D. Gu, “Security analysis of vendor
customized code in firmware of embedded device,” in International Con-
ference on Security and Privacy in Communication Systems, pp. 722–
739, Springer, 2016.

[37] Gordon Lyon, “Nmap security scanner.” Available at https://nmap.org/.
[38] B. Krebs, “Krebsonsecurity hit with record ddos.” Available at https:

//krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/.
[39] “Mirai github repository.” Available at https://github.com/jgamblin/

Mirai-Source-Code.
[40] Philips, “Philips in.sight wireless hd baby monitor.” Available at http:

//www.philips.co.uk/c-p/B120N_10/in.sight-wireless-hd-baby-monitor/
overview.

[41] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation,” in 20th Annual Network
and Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013, The Internet Society, 2013.

[42] K. Rosenfeld and R. Karri, “Attacks and defenses for JTAG,” IEEE
Design & Test of Computers, vol. 27, no. 1, pp. 36–47, 2010.

Omer Shwartz (S’ 17) received his M.Sc. degree from Ben-Gurion University
of the Negev (BGU) in 2018. He is a doctoral candidate in BGU’s Department
of Software and Information Systems Engineering. His current research
interests include hardware security and software security in smart device
context.

Yael Mathov is an M.Sc. student in the Department of Software and
Information Systems Engineering in Ben-Gurion University of the Negev. She
received her B.Sc. degree in Computer Science from Ben-Gurion University
of the Negev. Her research interests include IoT security, reverse engineering,
cyber security and machine learning.

Michael Bohadana is an M.Sc. student in the Department of Software and
Information Systems Engineering in Ben-Gurion University of the Negev.

12

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875240, IEEE Internet of
Things Journal

Yossi Oren (SM’ 17) received his M.Sc. degree in Computer Science
from the Weizmann Institute of Science, Israel, and his Ph.D. degree in
Electrical Engineering from Tel Aviv University, Israel, in 2008 and 2013
respectively. He is a Senior Lecturer (Assistant Professor) with the Department
of Software and Information Systems Engineering in Ben-Gurion University,
Israel. His research interests include implementation security (power analysis
and other hardware attacks and countermeasures; low-resource cryptographic
constructions for lightweight computers) and cryptography in the real world
(consumer and voter privacy in the digital era; web application security).

Yuval Elovici is the director of Deutsche Telecom Laboratories at Ben-Gurion
University of the Negev (BGU), Israel, and is a member of the information
systems engineering department. His main areas of interest are computer and
network security, information retrieval, and data mining. Elovici has a PhD
in information systems from Tel-Aviv University, Israel.

13

