
Opening Pandora's Box: E�ective Techniques for

Reverse Engineering IoT Devices

Omer Shwartz?, Yael Mathov?, Michael Bohadana?, Yuval Elovici, Yossi Oren
{omershv, yaelmath, bohadana}@post.bgu.ac.il, {elovici, yos}@bgu.ac.il

Ben-Gurion University of the Negev

Abstract. With the growth of the Internet of Things, many insecure
embedded devices are entering into our homes and businesses. Some of
these web-connected devices lack even basic security protections such as
secure password authentication. As a result, thousands of IoT devices
have already been infected with malware and enlisted into malicious
botnets and many more are left vulnerable to exploitation.
In this paper we analyze the practical security level of 16 popular IoT
devices from high-end and low-end manufacturers. We present several
low-cost black-box techniques for reverse engineering these devices, in-
cluding software and fault injection based techniques for bypassing pass-
word protection. We use these techniques to recover device �rmware and
passwords. We also discover several common design �aws which lead to
previously unknown vulnerabilities. We demonstrate the e�ectiveness of
our approach by modifying a laboratory version of the Mirai botnet to
automatically include these devices. We also discuss how to improve the
security of IoT devices without signi�cantly increasing their cost.

1 Introduction

In the early days of computing, low-cost ubiquitous devices were generally pow-
ered by simple microcontrollers. These microcontrollers typically ran a very lim-
ited software stack, ranging from a �xed-function program running in a busy
loop to a limited functionality real-time operating system (RTOS). As technol-
ogy matured, it became more cost-e�ective to create these devices around a
fully-featured operating system such as Linux, taking advantage of the existing
code base and of the relative ease of development and debugging. This is espe-
cially the case in the Internet of Things (IoT), which can be de�ned as a network
of smart electronic devices with internet connectivity. In the past years we have
been witnessing a dramatic rise in the amount of connected devices and recently,
wireless connected devices. The number of IoT devices is estimated to reach 50
billion by 2020 [17].

The task of the device security engineer has also evolved with the move from
ASICs and simple microcontrollers to complete Linux devices. Traditional hard-
ware attack methods which target ICs are less e�ective in this modern situation,

? These authors contributed equally to this paper

since the hardware can be assumed to be generic and even shared between dif-
ferent vendors. Ubiquitous network connectivity also changes the attack model,
making it interesting to examine the vulnerability of devices to remote attacks,
or the ability of an attacker to translate a single instance of physical access to
widespread damage to many devices. Indeed, the introduction of these small,
embedded devices unto the web and into residencies and businesses was quickly
followed by emerging security challenges [39]. The rapid growth in the quantity
and variety of IoT devices created a scenario where millions of devices [27] are
deployed while the consumers may know very little about their composition and
security. This is especially crucial since IoT devices are often equipped with a
wide array of sensors, are connected to private networks and control a variety of
physical systems, from entry gates and door locks to HVAC systems (Heating,
Ventilation and Air Conditioning) [29].

In this work we present a general methodology for �black-box� reverse engi-
neering of complete stack IoT devices. The techniques presented should answer
many use cases and can be used as a tutorial for accessing new devices. While
most of the techniques we use are generally well known, this is to the best of our
knowledge the �rst time they are applied systematically to many di�erent IoT
devices. This allows us to make quantitative arguments about the state of IoT
security today.

In detail, our paper makes the following contributions: We present a system-
atic reverse engineering work�ow appropriate for complete-stack IoT devices in a
detailed and tutorial-like manner. We apply this work�ow to sixteen IoT devices
produced by di�erent manufacturers and discuss their common characteristics
and security �aws. Finally, we o�er some guidance to implementors interested
in making these devices more secure.

1.1 Related Work

Mahmoud et al. [28] present a survey of the current concerns for IoT security.
The authors describe the general architecture of IoT devices and the security
challenges rising from this design, corresponding to the security principles of
con�dentiality, integrity, availability and authentication. Sicari et al. [36] claim
that the network communication characteristics of IoT devices, combined with
the increase in exchanged information, multiplies the potential for attacks on the
system privacy leaks. Similar concerns were also raised by Alqassem et al. [6]
and by Zhang et al. [40]. Interestingly, most of this analysis centers on security
threats to the user of the IoT device (i.e. loss of con�dentiality and availablility)
and less on the risks to the device itself (e.g. counterfeiting).

Patton et al. [31] studied the extent of vulnerabilities found in network-
accessible IoT devices. They reviewed several network scanners and focused on
Shodan [35], a publicly available search engine for internet connected services.
Using Shodan, the authors discovered many vulnerable IoT systems including a
large number of SCADA (Supervisory Control And Data Acquisition) systems.
Similar techniques can also be found in the work of Bodenheim et al. [10].

Tellez et al. [37] focused on WSN (Wireless Sensor Networks) and elements of
their security. For their research, the authors chose the MSP430 MCU and inves-
tigated it. The BSL password (Bootstrap Loader) that protects the MCU from
unauthorized access was presented as a main security feature of the MSP430
MCU. A �aw detected in the BSL password mechanism through reverse engi-
neering techniques allowed the researches to easily break into a secured MCU.
The authors also suggest ways for designing a Secure-BSL that can improve the
MCUs protection.

Gubbi et al. [20] o�ered an all-in-one review of the WSN terrain along with
the terminology that exists within it. Halderman et all. [21] showed techniques
for recovering secrets from DRAM (Dynamic Random Access Memory) modules
by transferring the modules into a new machine while minimizing data decays.
Lanet et al. [24] showcase methods for reverse engineering EEPROM data of java
memory cards. They describe forensics methods which enable the researcher to
locate critical data within the memory image, account for errors and eventually
rebuild the original applet code that is stored in the card.

Obermaier et al. [30] employs reverse engineering techniques on several wire-
less security cameras and shows how these are vulnerable to remote attackers
with no physical access to the surroundings of the device. The authors show
various encryption and communication faults that may allow and attacker to
impersonate a camera and eavesdrop or sabotage its communication.

1.2 Embedded Device Software Architectures

Software architecture determines many of a device's properties and limitations,
the architecture may include an OS (Operating System) or not. We di�erentiate
between three main types of software architectures present in embedded devices.
Full-stack OS based devices contain a modern operating system, such as
Linux, that separates execution into kernel mode and user mode. While tradition-
ally this architecture was preferred only when versatility and high performance
was needed, [22], more and more low-cost devices are now based on Linux due to
falling component costs and the ease of developing for this operating system. In
particular, many of the cameras we surveyed had a complete-stack Linux imple-
mentation. Partial stack OS based devices are devices with a special-purpose
real-time operating system (RTOS) such as VxWorks or vendor-provided OS im-
plementation. These devices are generally very speci�cally crafted for their task
[16], and tend to omit some of the features of complete-stack OS. Some lower-
end or single tasked IoT devices use this architecture, with the RTOS handling
WiFi, web protocols, and added vendor code in charge of gathering sensor data.
Finally, devices with no operating system are embedded devices which di-
rectly execute compiled instructions, without any OS support for functionalities
such as threading or interrupts. Devices with no OS can o�er better raw perfor-
mance and higher run-time predictability than other architectures, but tend to
have increased di�culty of development, causing a longer time-to-market.

While it is the authors' belief that partial stack OS devices have the potential
for security vulnerabilities, full-stack OS devices were chosen as the target for

reverse engineering in this paper. So far, all of the IoT attacks seen in the wild,
and known to the authors, had targeted full-stack OS devices, as these are more
generic and make use of many drivers and open source components that may
have vulnerabilities.

2 Reverse Engineering Methodology

Fig. 1: The building blocks of black-box reverse engineering

Following is a description of the �ow of actions performed in order to gain
access to the software of IoT devices, run foreign applications on it and extract
secrets such as credentials used for accessing the device. This section focuses on
reverse engineering �black-box� devices where no previous knowledge about the
device is required. The tools used for assessing these techniques can be seen in
Table 3 in Appendix.

Our black-box reverse engineering process follows a standard work�ow that
can be seen in Figure 1:

1. Physical inspection of the device.
2. Extraction of the device �rmware image and �le system:

(a) Bypass boot-time security and recover the �rmware image.
(b) Recover the data with out-of-band means.

3. Analysis the �rmware image and recovery of the secrets inside.

2.1 Inspection of the Device

Most of the devices can be carefully opened without damaging neither the exte-
rior of the device nor the internal components.

Locating and identifying memory components Smart devices that run the
Linux operating system require enough non-volatile memory for storing the ker-
nel and additional mandatory �le system components. A cheap and e�cient way
for engineering such devices is placing the memory module outside of the main
processor package. Devices engineered in such con�gurations usually employ a
processor that is capable of loading and running instructions directly from SPI
(Serial Parallel Interface) Flash memory or EEPROM (Erasable Programmable
Read-Only Memory) devices.

(a) F59L1G81A 1GB NAND Flash
module inside Xtreamer Cloud Cam-
era

(b) W25Q128FVSG 16MB SPI Flash
module inside Ennio SYWIFI002
Wireless Doorbell

Fig. 2: Examples of onboard memory

Understanding the memory technology is crucial for performing �rmware
extraction when there is no capability to run commands on the tested device,
see more details in Subsection 2.2.

It is common to �nd a memory module that uses technology consistent with
the required capacity inside devices. Common examples are: 25XX \ 26XX se-
ries eight-pin SPI �ash memory with up to 32MB of storage space; larger SPI
Flash devices with sixteen or thirty-two pins; NAND Flash devices that come in
various capacities and shapes and are usually coupled with a 24XX EEPROM
module for holding initial con�guration; eMMC (embedded Multi-Media Con-
troller) modules or cards usually containing more than a GB of data. Examples
of memory modules can be seen in Figure 2.

Identi�cation of the memory module can be performed by searching of the en-
graved device codes on the IC (Integrated Chip) package. In most cases the mod-
ules used are commonly known and available o�-the-shelf with public datasheets.

Locating UART terminals UART (Universal Asynchronous Receiver / Trans-
mitter) ports can be found on many smart devices. UART ports are commonly
used for development and maintenance via a Linux console that the port is
bound to. UART ports' communication is based on a speci�ed protocol in pre-
determined baud rate, typically 9600, 57000, or 115200 bits-per-second.

In many cases, UART terminals are embedded into the PCB (Printed Circuit
Board) in the prototyping stages of a product's life and are kept in the design
during production either to reduce costs of redesign or maintain access for fu-
ture maintenance. In certain cases, UART terminals are placed in a visible and
accessible locations, occasionally marked with their purpose. In other cases the
terminals are purposefully or unpurposefully hidden between many other test
points exposed on the boards for post-production testing. Connecting to UART
terminals allows easy access for communication with the OS, and may also form
a beachhead for the e�ort of reverse engineering.

Basic UART communication requires only three electrical lines: TX (Trans-
mit), RX (Receive) and GND (Ground). A typical UART terminal has two to

four exposed copper pads aligned in a row; when having two pads, the TX pad
is pulled electrically towards +1.8v, +3.3v or +5v and the RX pad might not be
pulled to either directions; when having three pads, the additional pad is usually
the GND pad and should have continuity to the ground plane of the PCB; when
having four pads, the last pad is generally VCC and shows up as +1.8v, +3.3v
or +5v when powered on.

By using the known properties and appearances of UART terminals it is
possible to locate suspected terminals using a Multimeter and verify them by
attaching a Digital Analyzer capable of analyzing UART communication. Figures
showing various placements of UART terminals can be seen in Figure 4.

UART discovery assistant module In order to assist with the detection
of UART terminals on PCBs that contain a large amount of test points, a
small device that generates audible beeps when probing an active UART TX
line was designed. The device is composed of an ATtiny13A [9] programmable
micro-controller along with auxiliary electronics with custom code that switches
between three popular UART baud rates, and it beeps when encountering a
threshold amount of English printable ASCII characters (characters larger than
0x20 and smaller than 0x7F). The device can be seen in Figure 3 in Appendix.
The source code for the module is publicly available in the authors' github repos-
itory [8].

2.2 Extraction of Firmware and Data

Handling Bootloader and Linux Passwords While booting, the bootloader
loads the kernel and passes over the boot arguments to the kernel. Commonly,
within the boot argument is the path for a user-mode process that starts when
the kernel completes booting.

After booting, the Linux kernel transfers control of the console to the user-
mode process. Traditionally, after executing a list of scripts, the init process may
transfer control either to the login or the shell process. When the login process
is started, it requests and veri�es the user's credentials and instantiates a shell
process for the user to control. The login process is protected from brute-force
attempts and employs a delay between consecutive password guessing attempts.

When encountered with a login request in an embedded device, a simple
technique is to replace the init part of the boot argument with a path to /bin/sh
or any other process that can assist with gaining access to the system. This
change can be done from within the bootloader terminal, that can be accessed
when the boot process begins.

Access to the bootloader is usually done by pressing some key at the �rst
stages of boot. In certain cases the bootloader is protected by password. Since the
bootloader has a very small memory footprint, it usually lacks the infrastructure
for password hashing and only performs string comparison against a hard-coded
password. The password string may be recovered from memory blobs obtained
via out-of-band methods.

Using physical attacks for bypassing passwords or recovering pass-

words Fault injections have a signi�cant role in reverse engineering [32]. The
usage of fault injections allows the researcher to generate a hardware fault at
any given time and manipulate the underlying software. Countermeasures for
fault injection attacks are under constant research [19], but they are rarely im-
plemented in devices that are not designed to be tamper-proof. We discovered
that hardware faults which cause the initialization process to fail can cause the
system to fall back into a highly-privileged shell process. This can be done by
disconnecting or shorting various hardware components. For example, shorting
the GND and MISO pins of an SPI Flash module will cause any reads from the
device to be malformed. Of course, this procedure carries the risk of damaging
the device or its memory.

While side-channel attacks can also be used for recovering passwords [15],
they tend to be better suited to systems with a simpler design such as ASICs or
FPGAs. They are more di�cult in our black-box scenario which includes a fully-
featured multitasking operating system. Many other physical attacks exist for the
determined researcher, some of which are even e�ective against tamper-resistant
devices [7], but none of the devices we investigated required these methods.

Uploading additional tools into the device Embedded systems are often
designed with the minimal set of features and components required for their task,
as such, their software is designed similarly. Embedded Linux may contain only a
small subset of the Linux utilities and features that desktop Linux users are used
to having. BusyBox [38] provides many known Linux utilities in reduced size and
pre-compiled for many common architectures. Using common utilities such as
FTP (File Transfer Protocol utility), TFTP (Tiny File Transfer Protocol utility),
Wget or NetCat can mediate data and �le transfer to and from the device and
over the network.

When network utilities are unavailable, data can be in�ltrated through crude
methods such as scripting the use of the Unix Bash Echo command for writing
binary data into �les. A simple python script that uses Echo for transferring �les
over UART is publicly available in the authors' github repository [8].

Obtaining the �rmware Extracting a copy of the �rmware and �le system is
an important stage for reverse engineering since analysis of the �rmware can re-
veal secrets and vulnerabilities. Firmware analysis is further discussed in Section
4.

When network connection and console access are available, Flash memory
MTD (Memory Technology Device) partitions can be streamed into NetCat and
sent to a remote computer. A copy of the �le system may also be compressed
using the Tar utility and streamed using NetCat. Doing so will eliminate the
need for unpacking the �le system, which is not always a trivial task.

If a network connection is unavilable, memory contents can be read over
UART from bootloader or Linux console. Bootloaders consoles often contain

memory read/write/display primitives and can be used to slowly dump an im-
age of the memory into the UART console. A script on the receiving end can
convert the hexadecimal-displayed data into binary format; such script is pub-
licly available in the authors' github repository [8].

When the bootloader and Linux console are inaccessible, �ash memory con-
tents can be dumped via out-of-band methods. There are several ways in which
the researcher can gain access to partial or complete data belonging to the de-
vice's memory. A minimally intrusive option is connecting a logic analyzer to the
pins of the memory module and recording the signals while the device is booting
up. Partial memory images can be extracted from the communications on the
memory bus, depending on the actual addresses that were accessed during the
recording. A simple script can convert the logic analyzer output to usable binary,
such script is publicly available in the authors' github repository [8].

In order to gain a full and accurate image of the device memory, it is possible
to desolder the memory chip and connect it to o�-the-shelf memory readers
such as the CH341A. If the memory module is not compatible with o�-the-shelf
readers, a custom reader can be built using a general purpose USB adapter such
as FT2232H or a programmable micro-controller.

More advanced techniques have been proposed [13] but are outside the scope
of this paper due to their costs and e�ort requirements.

2.3 Analyzing the Firmware

Unpacking memory images Once a memory image had been obtained, it
is necessary to unpack it in order to view the data it holds. The community-
maintained Binwalk utility has the ability to unpack and extract most common
embedded �le systems, and even some proprietary �le systems. When used with
the '-Z' argument, Binwalk detects raw compression streams that may be hidden
from default scans and is able to extract them. A collection of utilities named
�rmware-mod-kit [2] contains several �le formats and variations that Binwalk
does not support.

Brute-forcing passwords One of the more interesting feats of reverse engi-
neering is password extraction. Native Linux passwords are used by default over
SSH (Secure Shell) and Telnet (Telecommunication Network) connections and in
cases also for other services such as HTTP and FTP. An observation about the
Mirai IoT malware is that the infection method was connecting to IoT devices
over SSH/Telnet with default credentials. Many devices today have credentials
that are not as trivial as 'root', 'admin' or '123456' but are still not complex
enough to withstand exhaustive password search.

Linux user passwords are usually stored in the special �le '/etc/passwd' or
its companion '/etc/shadow' in a hashed format, using the crypt(3) [1] utility.
The password hash �les can be read freely by users with su�cient credentials
and can also be extracted from the �rmware.

crypt(3) supports several hashing algorithms, but two are the most observed
in IoT devices: Descrypt - A DES (Data Encryption Standard) based password

hashing algorithm. A modern high-end GPU (Graphical processing using) is ca-
pable of calculating over 9*10^8 descrypt hashes per second. Md5crypt - An
MD5 (Message-Digest Algorithm 5) based password hashing algorithm. A mod-
ern high-end GPU is capable of calculating over 10^6 (Ten million) md5crypt
hashes per second.

While simple passwords can be recovered using a generic password recovery
tools such as John the Ripper [4], advanced password cracking can be done with
Hashcat [3]. Hashcat supports advanced rules and patterns and is designed for
GPU hashing. The usage of Hashcat requires more knowledge than using John
the Ripper ans it is widely used for recovery of di�cult passwords.

In order to perform e�cient password cracking, a word-list or pattern �le is
required. Many patterns and word-lists are available online but none had proved
e�ective enough against hard to guess IoT device passwords. A few observations
by the authors about known and newly discovered passwords allowed the creation
and sorting of a password pattern list that proved e�ective against IoT device
passwords. The pattern generation rules consist of: up to two symbol charac-
ters; up to two three uppercase characters; any amount of digits and lowercase
characters; up to 8 characters total.

Another observation was that many elements of password di�culty inversely
correlates with password selection. For example: symbol characters are expensive
to search and used less often than other characters; digits are easy to search and
are widely used; uppercase characters are used less than lowercase characters.
This allowed sorting the pattern list according to increasing di�culty levels while
expecting to guess passwords in the early stages of testing the list. More on the
results of password cracking in Section 3. A python script for generating and
sorting the pattern list is publicly available in the authors' github repository [8].

Detecting vulnerabilities within the �rmware As �rmware images contain
the operating system and code controlling the device behavior, further analy-
sis may expose underlying vulnerabilities. While in-depth reverse engineering
techniques of the �rmware are beyond the scope of this paper, there are many
previous researches done in this �eld [30,25,12,11,26].

3 Results

3.1 Devices Under Inspection

Table 1 describes 16 IoT devices that were subjected to reverse engineering. As
shown in the Table, the survey included devices from many di�erent vendors
and with prices which varied by an order of magnitude. Most of the devices
with the properties selected for this work contain cameras. Additionally there
are two smart doorbells that are capable of streaming video, audio, initiating
VOIP sessions and also opening an entry door or a gate. A smart thermostat
was also analyzed. This device can control an entire household's HVAC systems.
A list of all of the devices and their properties can be seen in Table 1. All of the
devices contained the embedded Linux operating system.

Table 1: List of devices reverse engineered
Device
ID

Device Type Manufacturer Model Video
recording

Additional
Capabilities

Price
(USD)

1 IP Camera Xtreamer Cloud
Camera

Yes None 84

2 IP Camera Simple Home XCS7_1001 Yes None 54

3 IP Camera Simple Home XCS7_1002 Yes None 47

4 IP Camera Simple Home XCS7_1003 Yes None 142

5 IP Camera Foscam FI9816P Yes None 70

6 IP Camera Foscam C1 Yes None 58

7 IP Camera Samsung SNH-1011N Yes None 68

8 IP Camera Xiaomi YI Dome Yes None 40

9 IP Camera Provision PT-838 Yes None 163

10 IP Camera Provision PT-737E Yes None 102

11 IP Camera TP-Link NC250 Yes None 70

12 Baby Monitor Phillips B120N Yes None 46

13 Baby Monitor Motorola FOCUS86T Yes None 145

14 Doorbell Danmini WiFi
Doorbell

Yes Open
door/gate

80

15 Doorbell Ennio SYWIFI002 Yes Open
door/gate

119

16 Thermostat Ecobee 3 (golden
�rmware)

No HVAC
control

170

3.2 Techniques Used on Devices

Table 4 shows a sample of the devices inspected along with the properties that
allow or hinder reverse engineering. In the table there are also the techniques
shown e�ective against these devices.

3.3 Discoveries Made During the Evaluation

Login credentials One of the most signi�cant steps of reverse engineering an
IoT device is to identifying all of the user accounts within the device. Every
device contains at least one e�ective account which is the root account. The
root account is the most privileged account on a Unix system. The root account
has the ability to carry out all facets of system administration, including adding
accounts, changing user passwords, accessing the �le system, and installing soft-
ware. Once a hashed password is recovered and its underlying plaintext pass-
word revealed, the ability of logging into the device with root user privileges is
achieved. As can be seen in Table 2, eight of the devices contained password
hashed with the descrypt algorithm, while the other eight devices employed
md5crypt. The selection of hashing algorithm is critical for resisting password
cracking, descrypt hashing can be as much as ninety times faster than md5crypt,
as described in subsection 2.3.

Table 2: Discovered device properties
Device ID Similar products Password

Hash
Type

Open Services
for Remote
Access

Password
complexity

Contains
Private
Keys

1 Closeli Simplicam descrypt - Medium Yes

2 - md5crypt Telnet Very Low -

3 - descrypt Telnet Low -

4 Tenvis TH692 md5crypt Telnet Low -

5 - md5crypt FTP Unknown Yes

6 - md5crypt FTP Unknown -

7 - md5crypt - Unknown -

8 - md5crypt - None -

9 VStarcam D38 descrypt - Low -

10 VStarcam C23S descrypt Telnet Low -

11 - md5crypt - Very Low -

12 - descrypt SSH Medium Yes

13 - md5crypt - Unknown -

14 - descrypt Telnet Very Low -

15 - descrypt Telnet Very Low -

16 - descrypt - Low -

The pattern based password recovery described in Subsection 2.3 was used
against all of the extracted password hashes. Figure 5 in Appendix shows the
theoretical duration of password recovery using the proposed 48,820 patterns
that cover all of the password possibilities previously mentioned. The patterns
were sorted in order of rising complexity. For example, the pattern for six consec-
utive digits contains 1,000,000 possibilities and was sorted before the pattern for
�ve consecutive English characters that has 11,881,376 possibilities. As the �g-
ure shows, most observed non-empty passwords were recovered within the �rst
5,000 patterns, after testing only 5.22e+11 passwords. The theoretical bound
for testing that many passwords on a strong GPU server is 2.4 minutes for de-
scrypt hashes and 217 minutes for md5crypt. Actual password recovery can have
signi�cant overheads over the theoretical bounds.

Eleven non-empty passwords were recovered, one device contained an empty
password. Four passwords were not yet recovered to the time of writing this paper
and are expected to be revealed within several weeks. Table 2 shows password
complexities that varied between very low complexity (e.g. �abcd�) to medium
complexity (e.g. �AbC123de�), undiscovered passwords were given the complexity
rating �Unknown�. All the discovered passwords were veri�ed as the credentials in
multiple devices of the same model. Two devices made by the same manufacturer
were discovered to have the same passwords but di�erent hash values due to
random salt.

Remote access A simple port scan using Nmap [18] revealed that many of the
tested devices have administration services bound to open ports such as SSH
or Telnet, which allows a remote access. Remote access allows a user to log-in
to a device as an authorized user without being in the proximity of the device,
depending on the network topology. Six of the devices maintain a Telnet service,
one device has an accessible SSH port and two devices allow communication to
open FTP ports as can be seen in Table 2.Although some of the devices do not
allow communication through an administration port, by accessing the UART
console it is possible to set up network services performing the desired functions.

WiFi credentials IoT devices must be connected to the internet in order to
function properly. In order to maintain wireless connection persistency across
reboots and power shortages, a con�guration �le that holds the WiFi credentials
is located in all of the tested devices. The con�guration �le is located in the
mounted �le system, usually under the �con�g� or the �NetworkManager� paths,
and contains all of the WiFi settings, including the SSID (Service Set Identi�er)
and non-encrypted password. Retrieval of the correct �le from an extracted �le
system can be done simply by searching for relevant keywords.

Embedded private keys A private key is an object that is used by an encryp-
tion algorithm for encrypting and decrypting messages and plays an important
role in asymmetric cryptography. In three of the devices a hard-coded private key
used for secure communication were found, as shown in Table 2. With the pri-
vate key exposed, secure communication may be rendered insecure and exposed
to violations such as man-in-the-middle attack.

Rebranded devices In the IoT market, a rebranded device is one where the
internal design, architecture and �le system are purchased from one manufac-
turer, and cosmetic modi�cations link the device to a new brand and manufac-
turer. Identifying rebranded devices means that discovered private keys, hashed
passwords, account credentials and even the application vulnerabilities may be
identical across several devices. Four devices inspected were found to share a
non-trivial password or hashed password with products from di�erent manu-
factures, strongly implying a similarity between them. The devices were found
using a simple web search for the passwords and hashes and encountering forum
posts that specify hashes and passwords of other devices.

4 Analysis

The techniques that were shown in Section 2 may be used for both malicious
and benign activities. This section serves to demonstrate and discuss some of
the possibilities that emerge from making the reverse engineering process more
generic and streamlined, and considering the results seen in the last section.

4.1 Extension of Existing Attacks into New Platforms

Creation of a personalized Mirai botnet with increased capabilities

The infamous Mirai botnet had gained publicity after it was used against sev-
eral online web sites. After witnessing a large-scale DDoS (Distributed Denial
of Service) attack on KrebsOnSecurity.com, Martin McKeay, Akamai's senior
security advocate was quoted saying �Someone has a botnet with capabilities we
haven't seen before. We looked at the tra�c coming from the attacking systems,
and they weren't just from one region of the world or from a small subset of
networks � they were everywhere.� [23]. Mirai malware infects IoT devices with
an open Telnet port and default login credentials and add them to the attacker's
botnet army. The source code for Mirai was leaked to the internet on and can be
modi�ed and used by anyone who desires [5]. By using the reverse engineering
process we were able to extract new and previously unknown Telnet and SSH
credentials belonging to several IoT devices that were never a part of the Mirai
botnet. In order to create a customized version of the Mirai botnet, the source
code was modi�ed by adding the new passwords to the malware's source code.
After building an isolated network and infecting it with the modi�ed Mirai bot-
net. The bot activity over the network was monitored and the infection could
be seen spreading to the IoT devices that were added to the network.

An interesting example case is that after extracting the login credentials of
the ProVision PT-838 security camera, the modi�ed botnet was able to suc-
cessfully connect to the ProVision PT-737E security camera due to the shared
credentials between the cameras of the same manufacturer. The aforementioned
process allows the number of devices that are vulnerable to Mirai to be extended.

Remote access to IoT devices by unauthorized parties Remote connec-
tion to an IoT device, via Telnet or SSH, can be performed not only by malware
but also be used as an easy and quick way for an attacker to gain control over
a device remotely. The Philips In.Sight Wireless HD Baby Monitor (B120N/10)
was designed to allow parents to watch, listen and talk to their newborn [33].
During the reverse engineering process several critical engineering faults that
allows an outsider to use this device were discovered. Credentials were revealed
that allows anyone to connect through the open SSH port in all Philips In.Sight
B120N monitors. Additionally, SSL private keys that allow an attacker to per-
form a man-in-the-middle attacks on device communication were discovered.
Furthermore, as shown in the previous section, after gaining access to an IoT
device the attacker can extract sensitive information about the device and its
owner such as WiFi credentials.

Execution of arbitrary code on IoT devices During the reverse engineering
process, software is often uploaded into the device in various ways. The ability to
upload software and even have it maintain persistency after restarts has a great
implication on device security. Since it was shown how to gain complete device
control when physical access is available, physical access to a device can be used
to modify the device's behavior even after the device is no longer in proximity.

4.2 Possible Theoretical Attacks

Discovery of new vulnerabilities By using the black-box reverse engineering
process, an attacker with the possession of an unknown device (e.g. a security
camera with no identi�cation markings printed on it) that was obtained from
a public area may extract crucial or sensitive information. While analyzing the
results we found out that many IoT devices had old OS or �rmware version
that was outdated, when many issues were �xed in later versions. After learning
about the �rmware or OS version, the attacker can search the internet for known
vulnerabilities or even �nd this information in the release notes of more updated
versions. Furthermore, after obtaining the �rmware the attacker can scan the
software for security holes using static analysis methods [14,12].

Extraction of secrets from outdoor IoT devices Many IoT devices are
marketed for an outdoor installation (e.g. security cameras, smart doorbells etc.).
These products are mounted outside or in large halls and can be accessed by
strangers. For example, the Ennio Doorbell (SYWIFI002) contains a camera,
microphone and speaker in order to monitor and control an entrance and can
also be wired to a door or a gate for remote unlocking. The doorbell is usually
installed outside and may be accessed by a stranger. A direct result of the device's
accessibility is the ability of an attacker to physically modify sabotage the device.
However, it is not just the device that may be a�ected, secrets may be extracted
from the device giving the attacker access to the whole network.

Supply chain attacks Malicious activity can also be performed as a part of the
supply chain. An untrustworthy seller or courier can reverse engineer a device
without having any previous knowledge about the it and perform modi�cations
to the device. The recipient of an IoT device may use it without knowing it was
tampered with, perhaps even equipped with a backdoor, or some other malware.

4.3 Constructive Uses to the Reverse Engineering Process

There are uses of reverse engineering that can bene�t the owner. Lower-end
products are often received with insu�cient information about the hardware or
software inside. A concerned customer can use the described process and discover
properties of the device she bought. If the device is rebranded she could search
the internet for the similar devices by well other vendors. The consumer gains the
ability to learn about the device's vulnerabilities and perhaps even upgrade the
�rmware and secure the device. This process can be performed on many types
of IoT devices and may also assist with products that no longer have support.

Learning about the device's software and hardware can not only help the
customer identify their product, but also allows her to customize it to her own
needs. After gathering the desired information the owner can manipulate the
�rmware or con�guration. She can also develop her own system that will operate
the device and even add missing functionality. Modi�cation of stock devices can
also be used to hinder censorship and other information blocking instruments.

5 Discussion

The IoT market is evolving and so does the competition among the vendors for
being the �rst to create better and cheaper devices. This pressure may a�ect the
product's design and lead to devices with critical security issues being released.
Time is not the only obstacle for creating a secure product; as competition
drives the prices down, the production process must be become cheaper. Em-
ploying penetration testers and security analysts may be very expensive, while
the hardware engineers that built the product might lack knowledge of cyber
security. This trade-o� between money and security is usually inclined towards
cheaper but less safe products. The reverse engineering process empowers con-
sumers and researchers with abilities to discover important details about devices
available in the market and benchmark their security.

5.1 Recommendations for Implementers

The results and analysis shown in this paper support several recommendations
for better securing IoT devices.

1. Disable UART ports or remove their terminals from the board design. If a
UART port is required, it can be set up as read-only.

2. If a UART port is required and must be write-enabled, protect UART ports
in a similar fashion to JTAG protection [34].

3. Use unique strong passwords for every single device hashed with a strong
hashing algorithm. Passwords must be user replaceable in a convenient way.

4. If possible, encrypt all of the device's writable memory. Otherwise, encrypt
all sensitive data stored on the device.

5.2 Conclusion

The increase in IoT technology popularity holds many bene�ts but on the other
hand this surge of new, innovative and cheap devices reveals complex security
and privacy challenges. Vulnerabilities and design �aws in innocent IoT devices
are an opening for an adversary to exploit and misuse. As shown in Section 4, an
attacker that gains remote or physical access to an IoT device may snoop on the
owner's personal or sensitive information and even use the device's capabilities
for her own desire. The evolution of cyber crime didn't pass over the IoT and
in the last years we are witnessing new types of cyber attacks that involve IoT
devices. Accessibility of the black-box reverse engineering process may accelerate
the attacker's work and introduce new IoT cyber threats.

References

1. crypt(3) man page. Linux Programmer's Manual http://man7.org/linux/

man-pages/man3/crypt.3.html

http://man7.org/linux/man-pages/man3/crypt.3.html
http://man7.org/linux/man-pages/man3/crypt.3.html

2. Firmware-mod-kit github repository https://github.com/mirror/

firmware-mod-kit

3. Hashcat password recovery tool https://hashcat.net/

4. John the ripper password cracker http://www.openwall.com/john/

5. Mirai github repository https://github.com/jgamblin/Mirai-Source-Code

6. Alqassem, I., Svetinovic, D.: A taxonomy of security and privacy requirements for
the internet of things (iot). In: 2014 IEEE International Conference on Industrial
Engineering and Engineering Management, IEEM 2014, Selangor Darul Ehsan,
Malaysia, December 9-12, 2014. pp. 1244�1248. IEEE (2014), https://doi.org/
10.1109/IEEM.2014.7058837

7. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Christianson, B., Crispo, B., Lomas, T.M.A., Roe, M. (eds.) Security Protocols,
5th International Workshop, Paris, France, April 7-9, 1997, Proceedings. Lecture
Notes in Computer Science, vol. 1361, pp. 125�136. Springer (1997), https://doi.
org/10.1007/BFb0028165

8. Anonymous: The author's github repository. details omitted for anonymous sub-
mission (2017)

9. Atmel Corporation: ATtiny13A Datasheet (May 2012), http://www.atmel.com/
images/doc8126.pdf

10. Bodenheim, R., Butts, J., Dunlap, S., Mullins, B.E.: Evaluation of the ability of the
shodan search engine to identify internet-facing industrial control devices. IJCIP
7(2), 114�123 (2014), https://doi.org/10.1016/j.ijcip.2014.03.001

11. Chen, D.D., Woo, M., Brumley, D., Egele, M.: Towards automated dynamic anal-
ysis for linux-based embedded �rmware. In: NDSS (2016)

12. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of
the security of embedded �rmwares. In: Fu, K., Jung, J. (eds.) Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.
pp. 95�110. USENIX Association (2014), https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/costin

13. Courbon, F., Skorobogatov, S., Woods, C.: Reverse engineering �ash EEPROM
memories using scanning electron microscopy. In: Lemke-Rust, K., Tunstall, M.
(eds.) Smart Card Research and Advanced Applications - 15th International Con-
ference, CARDIS 2016, Cannes, France, November 7-9, 2016, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 10146, pp. 57�72. Springer (2016),
https://doi.org/10.1007/978-3-319-54669-8_4

14. Cui, A., Costello, M., Stolfo, S.J.: When �rmware modi�cations attack: A case
study of embedded exploitation. In: 20th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2013, San Diego, California, USA, February
24-27, 2013. The Internet Society (2013), http://internetsociety.org/doc/

when-firmware-modifications-attack-case-study-embedded-exploitation

15. DaRolt, J., Das, A., Natale, G.D., Flottes, M., Rouzeyre, B., Verbauwhede, I.:
Test versus security: Past and present. IEEE Trans. Emerging Topics Comput.
2(1), 50�62 (2014), https://doi.org/10.1109/TETC.2014.2304492

16. Davis, R., Merriam, N., Tracey, N.: How embedded applications using an rtos can
stay within on-chip memory limits. In: 12th EuroMicro Conference on Real-Time
Systems. pp. 71�77 (2000)

17. Gartner: Gartner says 4.9 billion connected "things" will be in use in 2015. Gart-
ner.com (2014), http://www.gartner.com/newsroom/id/2905717

18. Gordon Lyon: Nmap security scanner https://nmap.org/

https://github.com/mirror/firmware-mod-kit
https://github.com/mirror/firmware-mod-kit
https://hashcat.net/
http://www.openwall.com/john/
https://github.com/jgamblin/Mirai-Source-Code
https://doi.org/10.1109/IEEM.2014.7058837
https://doi.org/10.1109/IEEM.2014.7058837
https://doi.org/10.1007/BFb0028165
https://doi.org/10.1007/BFb0028165
http://www.atmel.com/images/doc8126.pdf
http://www.atmel.com/images/doc8126.pdf
https://doi.org/10.1016/j.ijcip.2014.03.001
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://doi.org/10.1007/978-3-319-54669-8_4
http://internetsociety.org/doc/when-firmware-modifications-attack-case-study-embedded-exploitation
http://internetsociety.org/doc/when-firmware-modifications-attack-case-study-embedded-exploitation
https://doi.org/10.1109/TETC.2014.2304492
http://www.gartner.com/newsroom/id/2905717
https://nmap.org/

19. Goubet, L., Heydemann, K., Encrenaz, E., Keulenaer, R.D.: E�cient design and
evaluation of countermeasures against fault attacks using formal veri�cation. In:
Homma, N., Medwed, M. (eds.) Smart Card Research and Advanced Applications
- 14th International Conference, CARDIS 2015, Bochum, Germany, November 4-6,
2015. Revised Selected Papers. Lecture Notes in Computer Science, vol. 9514, pp.
177�192. Springer (2015), https://doi.org/10.1007/978-3-319-31271-2_11

20. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (iot): A
vision, architectural elements, and future directions. Future Generation Comp.
Syst. 29(7), 1645�1660 (2013), https://doi.org/10.1016/j.future.2013.01.010

21. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91�98 (2009), http://doi.acm.
org/10.1145/1506409.1506429

22. Hollabaugh, C.: Embedded Linux : hardware, software, and interfacing. Addison-
Wesley, Boston (2002)

23. Krebs, B.: Krebsonsecurity hit with record ddos https://krebsonsecurity.com/
2016/09/krebsonsecurity-hit-with-record-ddos/

24. Lanet, J., Bou�ard, G., Lamrani, R., Chakra, R., Mestiri, A., Monsif, M., Fandi, A.:
Memory forensics of a java card dump. In: Joye, M., Moradi, A. (eds.) Smart Card
Research and Advanced Applications - 13th International Conference, CARDIS
2014, Paris, France, November 5-7, 2014. Revised Selected Papers. Lecture Notes
in Computer Science, vol. 8968, pp. 3�17. Springer (2014), https://doi.org/10.
1007/978-3-319-16763-3_1

25. Ling, Z., Luo, J., Xu, Y., Gao, C., Wu, K., Fu, X.: Security vulnerabilities of
internet of things: A case study of the smart plug system. IEEE Internet of Things
Journal (2017)

26. Liu, M., Zhang, Y., Li, J., Shu, J., Gu, D.: Security analysis of vendor customized
code in �rmware of embedded device. In: International Conference on Security and
Privacy in Communication Systems. pp. 722�739. Springer (2016)

27. Lund, D., MacGillivray, C., Turner, V., Morales, M.: Worldwide and regional in-
ternet of things (iot) 2014�2020 forecast: A virtuous circle of proven value and
demand. International Data Corporation (IDC), Tech. Rep (2014)

28. Mahmoud, R., Yousuf, T., Aloul, F.A., Zualkernan, I.A.: Internet of things (iot)
security: Current status, challenges and prospective measures. In: 10th Inter-
national Conference for Internet Technology and Secured Transactions, ICITST
2015, London, United Kingdom, December 14-16, 2015. pp. 336�341. IEEE (2015),
https://doi.org/10.1109/ICITST.2015.7412116

29. Nest Labs: Nest learning smart thermostat https://nest.com/thermostat/

meet-nest-thermostat/

30. Obermaier, J., Hutle, M.: Analyzing the security and privacy of cloud-based video
surveillance systems. In: Proceedings of the 2nd ACM International Workshop on
IoT Privacy, Trust, and Security. pp. 22�28. ACM (2016)

31. Patton, M.W., Gross, E., Chinn, R., Forbis, S., Walker, L., Chen, H.: Uninvited
connections: A study of vulnerable devices on the internet of things (iot). In: IEEE
Joint Intelligence and Security Informatics Conference, JISIC 2014, The Hague,
The Netherlands, 24-26 September, 2014. pp. 232�235. IEEE (2014), https://
doi.org/10.1109/JISIC.2014.43

32. Pedro, M.S., Soos, M., Guilley, S.: FIRE: fault injection for reverse engineering. In:
Ardagna, C.A., Zhou, J. (eds.) Information Security Theory and Practice. Security
and Privacy of Mobile Devices in Wireless Communication - 5th IFIP WG 11.2

https://doi.org/10.1007/978-3-319-31271-2_11
https://doi.org/10.1016/j.future.2013.01.010
http://doi.acm.org/10.1145/1506409.1506429
http://doi.acm.org/10.1145/1506409.1506429
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://doi.org/10.1007/978-3-319-16763-3_1
https://doi.org/10.1007/978-3-319-16763-3_1
https://doi.org/10.1109/ICITST.2015.7412116
https://nest.com/thermostat/meet-nest-thermostat/
https://nest.com/thermostat/meet-nest-thermostat/
https://doi.org/10.1109/JISIC.2014.43
https://doi.org/10.1109/JISIC.2014.43

International Workshop, WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6633, pp. 280�293. Springer
(2011), https://doi.org/10.1007/978-3-642-21040-2_20

33. Philips: Philips in.sight wireless hd baby monitor http://www.philips.co.uk/

c-p/B120N_10/in.sight-wireless-hd-baby-monitor/overview

34. Rosenfeld, K., Karri, R.: Attacks and defenses for JTAG. IEEE Design & Test of
Computers 27(1), 36�47 (2010), https://doi.org/10.1109/MDT.2010.9

35. Shodan: Shodan is the world's �rst search engine for internet-connected devices
https://www.shodan.io/

36. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust
in internet of things: The road ahead. Computer Networks 76, 146�164 (2015),
https://doi.org/10.1016/j.comnet.2014.11.008

37. Tellez, M., El-Tawab, S., Heydari, H.M.: Improving the security of wireless sensor
networks in an iot environmental monitoring system. In: Systems and Information
Engineering Design Symposium (SIEDS), 2016 IEEE. pp. 72�77. IEEE (2016)

38. Vlasenko, D.: Busybox: The swiss army knife of embedded linux https://busybox.
net/

39. Yu, T., Sekar, V., Seshan, S., Agarwal, Y., Xu, C.: Handling a trillion (un�xable)
�aws on a billion devices: Rethinking network security for the internet-of-things. In:
de Oliveira, J., Smith, J., Argyraki, K.J., Levis, P. (eds.) Proceedings of the 14th
ACM Workshop on Hot Topics in Networks, Philadelphia, PA, USA, November
16 - 17, 2015. pp. 5:1�5:7. ACM (2015), http://doi.acm.org/10.1145/2834050.
2834095

40. Zhang, Z., Cho, M.C.Y., Wang, C., Hsu, C., Chen, C.K., Shieh, S.: Iot secu-
rity: Ongoing challenges and research opportunities. In: 7th IEEE International
Conference on Service-Oriented Computing and Applications, SOCA 2014, Mat-
sue, Japan, November 17-19, 2014. pp. 230�234. IEEE Computer Society (2014),
https://doi.org/10.1109/SOCA.2014.58

https://doi.org/10.1007/978-3-642-21040-2_20
http://www.philips.co.uk/c-p/B120N_10/in.sight-wireless-hd-baby-monitor/overview
http://www.philips.co.uk/c-p/B120N_10/in.sight-wireless-hd-baby-monitor/overview
https://doi.org/10.1109/MDT.2010.9
https://www.shodan.io/
https://doi.org/10.1016/j.comnet.2014.11.008
https://busybox.net/
https://busybox.net/
http://doi.acm.org/10.1145/2834050.2834095
http://doi.acm.org/10.1145/2834050.2834095
https://doi.org/10.1109/SOCA.2014.58

Appendix

Table 3: A list of hardware and software tools used
1 Screwdrivers and plastic spudgers including common and uncommon drive

bits such as Philips, Torx, Security Torx and various star con�gurations.

2 BK 2712 Multimeter.

3 FTDI FT232R USB UART interface module.

4 Saleae Logic Pro 8 logic analyzer with the Logic 1.2.12 software.

5 CH341A USB EEPROM and Flash memory programmer module with
software version 1.29.

6 Intel i7-4790 desktop PC running Windows 10 operating system and Ubuntu
16.04.4 on a virtual machine.

7 Intel i7-6900K server with four Titan X (Pascal) Nvidia GPUs running
Ubuntu 16.04.2 LTS operating system with Nvidia driver version 375.66.

8 John The Ripper 1.8.0 CPU password cracking software.

9 Hashcat 3.6.0 multiple architecture password recovery software.

10 Binwalk Firmware Analysis Tool - latest version pulled from github
repository on 30/07/2017 and compiled locally, including all dependencies.

11 �rmware-mod-kit - latest version pulled from github repository on
30/07/2017 and compiled locally

Fig. 3: UART discovery assistant module

Table 4: Inspected devices and the techniques e�ective on them
Device
ID

UART
location*

Bootloader
password

Terminal
password

Terminal password
bypass technique

Data extraction
technique

2 Marked
pads

No Yes Shorted memory
caused fallback

Used Wget to
download
NetCat

5 Unmarked
pads*

No No - Physically read
the the on-board

�ash

8 Unmarked
pads*

No No - Used �echo� to
transfer NetCat
over UART

10 Unmarked
pads*

Yes** Yes Set bootcmd in
bootloader

Used NetCat

11 Unmarked
pads*

No Yes Trivial password Used Wget to
download
NetCat

12 Marked
pads

No Yes Set bootcmd in
bootloader

Used NetCat

15 Unmarked
pads*

No Yes Trivial password Used TFTP to
download
NetCat

16 Unmarked
pads*

No No - Used NetCat

* Unmarked pads were discovered by inspection of the PCB assisted with the UART
discovery assistant module 3.
** Bootloader password was recovered using a logic analyzer that sni�s communication
on the memory bus.

(a) UART terminals with
marking inside Xtreamer
Cloud Camera

(b) Wires soldered to a
header pads that includes
UART connections inside
the Ecobee 3 Smart Ther-
mostat

(c) Male pin header
soldered on top of UART
socket inside Samsung
SNH-1011N Smart Cam-
era

Fig. 4: Examples of UART terminals

Fig. 5: Password recovery duration using the GPU server described in Table 3.
Each marking on the graph is a successfully recovered password belonging to a
device inspected.

	Opening Pandora's Box: Effective Techniques for Reverse Engineering IoT Devices

